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1. INTRODUCTION

In dealing with the problem of time reversal symmetry
in a group theoretic way, Wigner' introduced the concept of
a corepresentation of a group G of linear/antilinear opera-
tors analogous to a representation of a group of linear opera-
tors only. It was soon realized that this theory had a ready
physical application in dealing with magnetic crystals,
where both linear and antilinear operators commute with
the Hamiltonian.? It is also likely that this theory can be
applied to the study of elementary particles due to T'or CPT
invariance.’

Despite its usefulness though, the theory of corepresen-
tations has unpleasant features as many results from the re-
presentation theory of groups over the complex numbers do
not appear to hold. Let G be a group of linear/antilinear
operators, and H the subgroup of linear operators. A core-
presentation D of G is a set of matrices over the complex
numbers

D= {Du),D(a):ucH,acG — H }

satisfying the following rules

D(uw,) = D{u)Du,))

D(ua) = D(u)Da), (1)
D (au) = D(a)D (u)*,

Diaa) = Dia)Dla)*

where the asterisk denotes complex conjunction. Then
(a) if M is a matrix commuting with D in the sense

MD (u) = D (u)M and MD (a) = D (@M *.

Then M is a scalar matrix if and only if it has a real
eigenvalue.*
(b) if D is irreducible,

S0 (), D (ulf, + $D (@)D (a)f = %66

where |G | is the order of G and fthe dimension of D.> Note
how j and k are interchanged in the two sums.

(c) the character of the matrix of an antilinear operator
is not invariant under a change of basis. This follows from
the transformation rule®

D'(@g=P 'D(a)P*. 2)

(d) the number of classes need not equal the number of
irreducible corepresentations (ICR’s). This and the next re-
sult can be verified from Cracknell’ or Newmarch and
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Golding.?

{e) the sum of the squares of the dimensions of the ICR’s
need not equal the order of G.

After deriving (a) and (b) Dimmock’® commented “....
further development of the representation theory of nonuni-
tary groups (without using the representation theory of the
linear subgroup) has so far proven untenable.” He, and oth-
ers following him, have then relied heavily on the representa-
tion theory of linear groups to obtain results about corepre-
sentations (we are not excepted from this!). In particular, the
reduction of direct products is usually performed through
the intermediary of the irreducible representations of the lin-
ear subgroup.®

This inevitably gives the impression that corepresenta-
tion theory is a poor ‘second cousin’ to representation the-
ory. In arecent book Cracknell® is forced to defend the use of
corepresentation theory for magnetic materials against those
who feel that ordinary representation theory is quite suffi-
cient, and moreover, has better properties. The best theoreti-
cal argument against this view is a demonstration that all
fundamental results in representation theory are mirrored
by similar fundamental results in corepresentation theory,
proved without using any theorems on representations. In this
paper it is demonstrated that, with certain generalizations
and additional concepts, a square character table exists for a
finite magnetic group and that this table posseses row and
column orthogonality.

All of the results contained here can in fact be derived in
a simpler manner by use of representation theory (cf. the
character test for the types of ICR). We do not adopt that
course as we wish to show that corepresentation can stand
independently of representation theory.

First, some preliminary results. From Eq. (1)

Dwy'=Du 'Yand D(a)"'=D(a ")~

Definition: Two corepresentations D, and D, are equiv-
alent if there exists a matrix M such that

MD (u) = D,(u)M and MD (a) = D,(a)M *
for all u, acG. The matrix M is said to intertwine D, and D,. If
D, equals D,, M commutes with D,.

Theorem 1: Every corepresentation is equivalent to a
corepresentation by unitary matrices. This has been shown
by Dimmock.’

Definition: A corepresentation is reducible if it is equiv-
alent to a corepresentation of the form
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0 Dy
Otherwise it is irreducible an (ICR).

Theorem 2 (Mashke): Every corepresentation is equiv-

alent to a direct sum of irreducible corepresentations. This
has been given before.’

2. SCHUR’S LEMMAS

An algebraist once remarked to us “but nothing inter-
esting happens in ordinary representation theory!” To some
extent we can now sympathize with this view, as what is lost
in simplicity is here compensated for by variety, with four
useful forms of Schur’s lemmas.

Theorem 3 (Schur Ij: A matrix M intertwining two
ICR’s D, and D, is either nonsingular or is zero.

Theorem 4 (Schur II): If M is Hermitian and commutes
with a unitary ICR D then M is a real constant matrix. Both
of these have been shown by Dimmock.’

Theorem 5 {Schur IXI): If D is a unitary ICR, and M a
matrix satisfying MD (u) = D (u)Mand M *D(a) =D (a)M *
for all u, aeG then M is a constant matrix.

Proof: From
D (a,a ;M = MD (a,a,),

D(a\)D(a,)*M = MD(a,)D(a,)*,
orDia )M **Da,)* = MD{a,)D(a.)*.
Hence

Dig)M " *=MD(a,).
Similarly, from

DwaM* = M™*Dua),

D(uM™ M *Du).

Together with the assumptions
DiuyM+M )= M+ M™*\D(u)
and
Dig)(M+M")*=(M+M")Da)
for all u, aeG. By Schur 11,

Mi+M*=Al
Next, from the linearity of # and antilinearity of a,
Du)iM) = iMD (u),
D@ (iM}* = —iM*Da)
Dw)iM*)* = iM*D(u),
D@gyiM*)* = —iMD(a)

SoiM — iM ™ alsosatisfies Schur IT and is a constant matrix.
Hence M is constant as required.

The restriction imposed on M in Schur II that it be
Hermitian is a very real one. If it is not, we have already
shown® that M is nonconstant. It is not possible to say much
about any single such matrix, but we can derive results about
the set of commuting matrices:

m = {M:M commutes with D },

m is closed under matrix multiplication and addition; if
Memthensois M ~;itis also closed under scalar multiplica-
tion by R, and finally if M 50, kM #0 for any integer k.
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Hence m is a (skew} field of characteristic zero over R. We
can say more about m. Any Mem can be written as the sum of
a Hermitian and a skew-Hermitian matrix, and it is simple to
show that both these belong to m. By Schur II, m can thus be
written as a direct sum

m= {Al'AcR} e m’, (3)
where m’ contains only skew-Hermitian matrices. For any

Mem’, M ? is Hermitian, and since its eigenvalues are
negative,

M?= —yu*I, withpy real. 4)

Asm’is closed under multiplication by R, it follows that for
m’ nonempty we can find elements M,, M,, M,, .-- such that

MA.VJZMI"* = —-M,. (5)
With these preliminaries out of the way, we now show

Theorem 6 (Schur IV): m is isomorphic to R, C, or .

Proof: If m’ is empty, then by Schur II m is isomorphic
to R. Assume, then, that m’ is nonempty. The proofis in two
parts: First it is shown that m contains a multiplicative sub-
group isomorphic to the group of C or the group of Q. Then,
it is shown that the algebra of this group over R equals m.

Let G be a multiplicative subgroup of m consisting of
elements

G={+1L+M, +M,-Mem',

M?= —ILMM, = — M;M, for all i,j#i].
AsMM, = — MM, M;#M, for i#j. If such a subgroup
only contains the four elements

I+ M,

then it is isomorphic to the group of C.

Suppose then it contains more. It cannot contain only
six elements for this would mean that M, M, is a multiple of
I, M,, or M,, which gives a contradiction. Thus it will con-
tain at least eight, and we show that this is the maximum.
For consider any MeG which is not a multiple of I, M, or M,.
Then

MMM
is Hermitian as M ;¥ = — M, and all M, anticommute.
Hence by Schur II

MMM =AI withA real.
AsM?= —L,A= +1,s0

M=+ MM,
Therefore

G= l iI! iMly i-MZ’ iM]M2}1
which is easily seen to be the quaternion group. Thus G is
either the group of R, C, or Q. It is not hard to check that this
is a property of m rather than the particular group, i.e., if one
group is isomorphic to Q, then all are etc. and we can refer to
the group of m.

For the second part of the proof, we consider the case
when the group of m is the quaternion group as the other two
follow as special cases. Further, to show that any matrix inm

belongs to the algebra over R of G, it is sufficient to show that
any Mem' is a real linear combination of M,, M,, and M, M.
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By Hermiticity and Schur II,

MM, + MM = al,
MM, + MM = bl
MMM, + MMM = d,

with g, b, ¢ real. Set
N=2M+aM, + bM, + cM | M,.
Clearly Nem'.
It follows that N anticommutes with M, M,, and M, M,.

Hence N is either zero or by normalization an element of the
group of m. As there are no other elements of this group, N
equals zero and

M= —\(aM, + bM, + cM\M,) (6)

as required.

Thus there are possibly three kinds of ICR according as
m is isomorphic to R, C, or Q. That these three types actually
occur is shown by our earlier work.® It is helpful to quantize
this by introducing the intertwining number from the pure
mathematicians’ version of group theory.!” Recall that any
complex number may be written as an ordered pair of real
numbers, and that any quaternion may be written as an or-
dered quadruple of real numbers. This leads to the following.

Definition: The intertwining number I of m is the di-
mension of m as an algebra over R. An ICR is of type (a) if m
is isomorphic to R in which case 7 = 1; of type (b} if m is
isomorphic to Q, when I = 4, and of type (c) if m is isomor-
phic to C with I = 2.

3. ORTHOGONALITY RELATIONS

The general forms of the orthogonality relations have
previously been given by Dimmock.® They are
Theorem 7: If D, and D, are two inequivalent ICR’s,

> D) Dyuy = Y D\fa)y Dyfa)f = 0. (7)
For D irreducible and unitary,
DD WDk + Y D@D =6,6,4Gl/f,  (8)

where fis the dimension of D.
We only remark that the last part of this theorem may be
shown in a simpler manner as

M=3YDwXD(u ')+ SDa) XD "*

satisfies the conditions of Schur III and hence is diagonal.

This theorem does not take into account the different
types of ICR and their properties. The following is proved
for an ICR of type (b) and is specialized to types (a) and (c)
later.

Theorem 8: If D is a unitary ICR of type (b) with the
group of m generated by M, and M, then

2D (u)yD (u)x;

=G 172(16:8, — (IG 72f)M ) (M ),
— (G /Y WMo) (M) — (1G 1/2f) (M M),y (M M), (9)

697 J. Math. Phys,, Vol. 23, No. 5, May 1982

Proof: From Schur IV, the following matrix is in m and
can be written

SD (XD (u)* + SD (@)X *D(a)*

= Al +uM, + oM, + MM, (10)
with A, 1, w, 8 real. Taking Hermitian adjoints

SDUX *D(u)* + ID(@X Da)*

=Al —uM, — oM, — SMM,. (11)
Adding and taking traces,
{1G |72f) (trX + trX *) = A. (12)

By pre- and post-multiplying these by M, we can isolate the
term ul to give

p= —(G|72f)[tr(XM,) + tr(XM,)*] (13)
with similarly

o = — (|G |/2f)[tr(XM>) + tr(XM)*] (14)
and 6 = — (|G |/2f)[tr(XM ,M,) + tr{ XM, M,)*]. (15)
From Schur IIT we also have

YD (uXD(u)" + ED (@X™D(a)* =z, (16)

with Hermitian adjoint
SDwX *Du)*" + ED (@X *D(a)* =z*I, (17)

where z = (G /f)trX. (18)

The sum over @ may be eliminated from Egs. (10} and (17) to
give

SD(u) (X — X *)D (u)*
= (A — 2% + uM, + oM, + 5M,M,.

By setting X, = 1 for some, k and zero otherwise, and then
setting X, = i for the same j, kK and zero otherwise, simple
manipulations give the result.

These may be specialized to a type {c) ICR by setting
M, = 0and to a type (a) ICR by also setting M, = 0. We give
a summary for each case, together with the character tests
which follow directly with Eq. (8).

Type (a):
LURITE VNI RSN (19)
Srlupetur® = Syia) = 161 (20)

Type (b):

%:D(u),jD(u)}',‘\. = f—f'é,-,a,k - %(M i (M),
- %(Mz)k, (M),
— %{M,Mz)kj (M \M,),, (21)
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G G
So@. D =1%1s,8, + Sl 1)),

of 2f
+ %(Mz)k,- (M),
+ %{MIMZ)U(M,MZ),-,, 22)
S xluly(u)* =2|G |, (23)
S xl@)= —1G|. (24)
Type (c):
_ 1G] _ g
ZD(u)ijD (Ul = _zf_ailajk z_f(Ml)kj(Ml)il’ (25)
_1G| 1S sy g,
Ea:D @y Dla)f = ‘—2761'15;1( + o (M) (M), (26)
Sxluyw)* =G|, (27)

Syla?) =0. (28)

Equations (7), {20), {23), and (27), when combined with
the intertwining number, are actually the row orthogonality
relations of the character table. We defer the statement for a
discussion of the class concept.

4. CLASSES IN COREPRESENTATION THEORY

It has already been remarked that the number of classes
need not equal the number of ICRs (it is always equal to or
larger). An examination of previously published tables’ also
shows that in many cases different classes have the same
character for all ICR’s. Clearly then, the definition of class
must be extended for corepresentation theory.

Definition: Two elements u, and u, of the linear sub-
group H are said to be in the same corepresentation class (C
class)if either u, = u uu™"'for some ueH or u, = au,'a="
for some acG — H.

It is straightforward to check that this is an equivalence
reiation on H so that a C class may be labelled C, where u is
any element of the C class. This also follows easily:

Theorem 9: The character of a corepresentation is a C-
class function on H.

The C class is here only defined over the linear sub-
group H; it does not as yet appear useful to extend it to
G—H.

Theorem 10 (Row Orthogonality): If D; and D; are two
unitary ICR’s with characters on H of y; and y; respectively,
and the number of elements in C, is n,, then

CE"uXi(u)Xj(“)* = 6iinIH 8

where the sum is over all C classes of A and I, is the inter-
twining number of D,.

This follows as stated at the end of the last section. Immedi-
ate results from this are

Corollary 1: If D is a corepresentation equivalent to a
direct sum of ICR’s D,
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D = @ Zdr‘Di’
then

1
i m;nux(u)Xi(u)*'

Corollary 2: If two corepresentations have the same
character on H, they are equivalent. Returning to results on
C classes,

Theorem 11: (a) #'C,u' ' =C, and aC,a~' =C "
for all 4, aeG. (b) C, and C ' are in one-to-one correspon-
dence under the mapping g—g~'.

Theorem 12: Let D be a unitary ICR and

S, = Y D)
w'eC,
Then S, =zI.

Proof: This follows by using the previous theorem to
show that S, satisfies the conditions of Schur II1.

5. THE REGULAR COREPRESENTATION

The regular corepresentation Dy, is useful in corepre-
sentations for exactly the same reasons as the regular repre-
sentation is; with the elements of G ordered in some arbitrary
fixed order, define

Dy gy =1 if =88
=0 if g#g.g '

Due to the reality of the matrices, this representation is also a
corepresentation. The following are shown in exactly the
same manner as in representation theory''—once the basic
C-class results and row orthogonality are known, the meth-
ods of the two theories coincide.

Theorem 13: The number of times an ICR D, is con-
tained in Dy is

2f./1,.
Theorem 14:

2
sk
1

4y

1

Theorem 15: If e is the identity of G and D, is a unitary
ICR

z Xilely:(u)*

7 1,

Theorem 16 (Column Orthogonality): If D, is a unitary
ICR,

= Sleu)|H |.

v (1 )%

grbbl oo o H]
i {; o

6. DIRECT PRODUCTS

The (inner) direct product is defined in the normal way
by

D=D,®D, if D(g);w =D gluD:g)-

From the row orthogonality, this can be reduced directly
without reference to the irreducible representations of H.
We collect the interesting results in one theorem.
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TABLEL The character tables for the 58 magnetic point groups. The group or groups are given on the upper left of each table, with the ICR’s beneath. In the
upper middle is given the C classes with the character beneath. To the right is the intertwining number for each ICR.
(a)

1 2! m' E I

A A A 1 1

(b)

2Y/m

(=]
Ny
5—
by by by
~

2/m' 222!

(e)

2m'm' E C.

fe

m'm'm’ E
mmm! E C. o, o
E

—_—
|
—_—
I
—_—
(|
—_—
_—

412! E CerCs, C,, I

1 —1 -1

s
NN o= -

|

)

o

|

[\ ]
B

-2 -2 2

a
~
_
—
-
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TABLE I (Continued ).
().

4'/mmm

E CZ)NCZy Ca. I 0,0, g, I
A, 1 1 1 1 1 1 1
E, 2 0 -2 2 0 -2 2
B, 1 —1 1 1 —1 1 1
A, 1 1 1 -1 -1 —1 1
E, 2 0 -2 -2 0 2 2
B, 1 -1 1 ~1 1 -1 1
(_i\
42"2! E C3 cl C. I
A 1 1 1 1 1
B 1 -1 1 —1 1
g 1 -1 i —i 1
E 1 —1 - i 1
(k)
4/m’ E Ch.C, C,,
4"/”1l E 34: yS4; CZ: 1
A A 1 i 1 1
B B 1 -1 1 1
E E -2 2
(1)
4m'm' E Ca G, Ca
2'm' E S G, S 1
A A 1 1 1 1 1
B B 1 — 1 1 —1 1
'E 'E 1 i -1 —i 1
’E 'E 1 —i —1 i 1
(m),
4/mm'm' E Ch C,, Ce I Se o, S 7
A, 1 1 1 1 1 1 1 1 1
B, 1 —1 1 —1 1 —1 1 -1 1
'E, 1 i —1 —i 1 i —1 —i 1
’E, 1 —i —1 i 1 —i -1 i i
A, 1 1 1 1 —1 —1 — 1 —1 1
B, 1 -1 1 —1 -1 1 -1 1 1
'E, 1 i —1 —i -1 —1i i i 1
E, 1 —i —1 i —1 i 1 —i 1
(n),
4/m'm'm' E Cy, Ci Covy Crap
4/m'mm E C,, (oF3 Ory Caab
4/m'm'm E C,, Si Ciy Oaap I
A, A, A, 1 1 1 1 1 1
A, A, A, 1 1 1 -1 —1 1
B, B, B, 1 1 - 1 -1 1
B, B, B, 1 1 —1 —1 1 1
E E E 2 -2 0 0 1
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TABLE I (continued ).

(o)

32! 3m' E

A A 1
'E 'E 1

w* 1

9}
it
By

.4
:x-,
_— e
S
»
S

—_——

—1
-1
—1

—
—

w* @
—1 -1
—w —w
*®

— o —

—w

-1

bxy
N o= N =

—1

|
—
[ Y N .

T41.23
Clias 1

a0
“

—
—

6'/m'm'm E Ci

+
S T41,2,3 I

5
N o= o N = e
—_

—_—

1
-1
-2

-1 0
—1 -1
-1 1

(u)

6m'2!

o
1)
2
o
S_
3—
ty o

Sy
Cy

A’ A A
lEﬂ IEl lEI
E” ’E, ’E,
A" B B
g’ ’E, ’E,
IEI IEv2 IE'2

— et

—w*

-1

—
—
— e s .
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TABLE (Continued ).
v)

6'/m E S o C;

6/m' E cs G cr I

A A’ 1 1 1 1 1

E, E" 2 1 -2 —1 2

B A" 1 —1 -1 1 1

E, E’ 2 2 —1 2

(w)

6/mm'm  E cr ¢+ G c: c; I s. S o, s+ S- 1
A, 1 1 1 1 1 1 1 1 1 1 1 1 1
'E,, 1 —0* @ -1 w* —w 1 -w* -1 o* —w 1
’E,, 1 —w w* -1 ) —w* 1 —w w* —1 © — w* 1
B, 1 —1 1 —1 1 1 1 —1 1 -1 1 —1 1
’E,, 1 © w* 1 @ o* 1 ) w* 1 @ w* 1
'E,, 1 w* o 1 w* 1) 1 w* ) 1 w* ) 1
A, 1 1 1 1 1 1 -1 -1 —1 —1 —1 -1 1
'E,, 1 —o* o —1 o* —w —1 o* —w 1 — w* » 1
’E,, 1 —w w* —1 a) - w* -1 ) —w* 1 —w o* 1
B, 1 —1 1 -1 1 -1 -1 1 -1 1 —1 1 1
E,, 1 © w* 1 © o* —1 —w —w* —1 - —w* 1
'E,, 1 0* o 1 w* © —1 —w* ) -1 — w* —w 1
() _

6'/mm'm E g, o S Cs, O,

6/m'm'm E C,, CF C& C;, Cy
6/m'mm E C,, Ci C¢ 04 g, 1

A 4, 4, 1 1 1 1 1 1 1
A3 4, 4, 1 1 1 1 —1 1 1
A7 B, B, 1 —1 1 —1 1 —1 1
A7 B, B, 1 —1 1 —1 —1 1 1
E" E, E, 2 2 -1 1 0 0 I
E' E, E, 2 2 —1 -1 0 0 1
W)

m'3 E Con ci I

A 1 1 1 1

E 2 1 —1 2

T 3 -1 0 1

(z)

4'3m' 432! E C,m C, cy I

A A 1 1 1 1 1

'E 'E 1 1 © w* I

E ’E 1 1 w* © 1

T T 3 —1 0 0 1

(aa)

m3m' E Conm Cy (olhs I a,, S S, 1

A, 1 1 1 1 1 1 1 1 1

'E, 1 1 1) w* 1 1 @ w* 1

’E, 1 1 o* o 1 1 w* ® 1

T, 3 —1 0 0 3 — 1 0 0 1
A, 1 1 1 1 —1 —1 —1 ~1 i

'E, t 1 1) w* —1 —1 —w —w* 1

g 1 1 w* ® —1 —1 P —w 1

T, 3 —1 0 0 -3 1 0 0 1
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TABLE I (Continued ).

{bb)
m'3m' E of Con C, am
m'Im E oF Cs,. Ty 4 I
A, 4, 1 1 1 1 1 1
A, A, 1 i 1 —1 -1 1
E E 2 —1 2 0 0 1
T, T, 3 0 -1 -1 1
T, T, 3 0 -1 1 - 1
(

Theorem 17: have been adapted from the tables of Cracknell’ and all nota-

(a) If D;, D;, and D,, are ICR’s and tions are the same as there.

D D = o Zd ,’;Dk. APPENDIX: DESCENT IN SYMMETRY TO THE LINEAR

k SUBGROUP

Then

k

1
dj=———Nn,y{uly(uy.u*
i Ilel;., Xiluly(uly (u)
(b) If 0 is the identity ICR,
d% =1,
(c) If d % is the multiplicity of 0 in D, eD;eD,
then

d°

w=d5I.

This difference between the double and triple product is
of great importance in developing a Racah algebra for such
groups.®

Symmetrized and antisymmetrized squares are neces-
sary in dealing with a number of fermions or bosons; symme-
trized cubes are used in magnetic phase transitions®; symme-
trized, antisymmetrized and mixed symmetry cubes
separate out the permutation properties of the 3jm symbols.
These can all be distinguished by character tests. For com-
pleteness we summarize them here. The notation used is
{4}, where {4 } is a Young diagram of S, .

{aly,2 (u) = 1( [l’(u)]z +X(u2)),

(b)X; 1y (u) = %( [X(UHZ — X(uz)),

(Chyyx ()= L Dxl) 1 + 3y () + 2y (),

(i, () = 3 Lxe(@)]® — 3pte®lylw) + 2xta?)),

(€)y 2y () = §(Tx()]* — y(uY).

The row orthogonality now allows a direct reduction of

these powers without use of tables relating these powers to
the linear subgroup.

7. CONCLUSION

In this paper it has been shown that the powerful con-
cept of a character table applies to finite magnetic groups as
well as linear groups. The only added complexity is the sim-
ple intertwining number. The character table will expedite
calculations as well as helping to show that corepresentation
theory can stand upright without leaning on representation
theory for most of its results.

To make the theory more concrete, the character tables
for the fifty-eight magnetic point groups are given. They
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The results obtained so far have been done without any
reference to the representation theory of linear groups. It is
known, however, that there are strong relations between the
ICR’s of G and the irreducible representations (IR’s) of H.'
These are generally shown by ascent in symmetry where the
ICR’s of G and their properties are determined by the IR’s of
H. From the methods developed earlier, we now reverse this
and derive these relations by descent from G to H. No new
results are demonstrated—rather the interplay between
Schur’s lemmas for linear and nonlinear groups is shown.

First we fix notation, and give the row orthogonality of
an ICR of G subduced to A. Let D be a unitary ICR of G and
4 the possibly reducible representation of H obtained by
descent to H. y, the character of D on H, is also the character
of A. Row orthogonality then gives

Dxlulyu)* =1 |H |

with 7 the intertwining number of D. Each type of ICR is
now considered in turn.
Type (a): Since I equals one, 4 is an IR. Setting
P=Dla,)
for an arbitrary fixed element of G — H,
4 (ag) = D (ay)D (ag)* = PP*
and
A(aguag ") = D(aguay ') = PA (u)*P .
The ICR matrices are then given by
D (u) = A (u) and D (a) = D (aag 'a,) = 4 (aa; ")P.
The IR satisfies the character test

21’4 (@) = |H |.

For the other two types of ICR, 4 is reducible. To gain
the results given by other authors® we consider the special
case in which a unitary transformation has been applied to D
so that 4 is in completely reduced form.

Type (b): As the intertwining number is four, 4 is reduc-
ible to either 4,04, or 4,04, ® 4; 8 4,. This second pos-
sibility soon leads to a contradiction for by Schur’s lemma
for linear groups any Mem must be
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z 1 0
z,1
z,1
0 z,d

Schur IV shows then that Mem' is purely imaginary so that
M, M,, and M\ M, are purely imaginary. This is the required
contradictionandsod = A, 94, ie.,
A4 ,(u) 0 )

0 A \(u))
By Schur’s lemma for linear groups applied to Mem

M C,I 221)
Az, 0
Butby Schur ILM + M * =Aland (M — M *)? = — u?I.
Hence

" (1 0)+x(z‘1 0)
o 1)7*™o  —ir

(0 1) (o il)
1 o/ T o)

This in turn imposes restrictions on D (a) as MD (a)
= D {a)M *. Choosing an arbitrary element a,eG — H gives

i~y 1)

D _( 0 A,(aao_‘)P)
=\ _ 4aas P o /

4,(a3)= — PP*,
Afaguay ') = PA,(u)*P ™,

D(u)=A(u)=(

and

dHala’)= — |H|

Type (c): The intertwining number is now two so 4 is
equivalent to 4, ® 4, with 4,=£4,. If 4 is in completely re-
duced form
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Al = (A ](;u) Aju))’

the same reasoning as before gives Mem as

I 0 i 0
M= .
x'(o 1) +x2(0 —1'1)

For fixed arbitrary a,€G — H,

Dl =(p o)
4 (aay ')P,),

0
D(a)= .
2laag )P, 0
4,(a3)=P,P¥ and A,a})=P,P¥,
and
A \(aguag ') = P A (u)*P [+,
A \(aguay ') = P,A(u)*P ;"

from which the character test follows:

2 Xa,(@) =3 xala})=0.
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Versal deformations of elements of complex orthogonal and symplectic Lie algebras are studied.
For a general element M of o(n,C) or sp(2n,C), a normal form M, is found which, unlike the
Jordan normal form M, depends holomorphically on M and on the similarity transformation
M, = gMg~ " from the corresponding group. Orthogonal and symplectic cases are treated
simultaneously in order to underline their close relation. Bundles of matrices of low codimension
are listed and bifurcation diagrams of two-parameter families of orthogonal matrices are shown.
Finally, versal deformations of all elements of 0(6,C) are explicitly shown.

PACS numbers: 02.20.Sv, 02.20.Qs

I. INTRODUCTION

In 1971, Arnold' pointed out that a complex matrix
MeC """, whose matrix elements are known with only a fin-
ite precision, and with some multiple eigenvalues, may not
always be transformed into its Jordan normal form M,. A
small change in M may result in a different structure of M, .
Thus the transformation M, = gMg~"', geGL(n,C), is not
stable: it does not depend in a continuous way on either M or
g- This difficulty is not too serious, as long as one is interested
in just one matrix M. Indeed, one can always find a matrix
with all eigenvalues distinct and as close as necessary to M.
If, however, we are interested in a whole family of matrices
depending holomorphically on complex parameters, multi-
ple eigenvalues cannot be avoided in some members of the
family.

The result of Arnold’ is a new normal form, say M ,,
such that not only can M be transformed into M, but any
family of matrices “close” to M. The normal form of Arnold,
M ,, is computed as the versal deformation of M, using
techniques of deformation theory. From this, Arnold de-
scribes the structure of any matrix belonging to a k-param-
eter family of matrices in general position. For small £ he
describes precisely the bifurcation diagrams: i.e., the set of
parameters values which correspond to matrices with multi-
ple eigenvalues.

The transformation of M to the Jordan normal form M,
or to the Arnold normal form M, is a GL(n,C)-conjugacy
transformation of the element Megl(n,C) of the Lie algebra
gl(n,C) of the general linear group GL(n,C). Since every M’
close to M can be transformed into M, , the normal form M,
“intersects” all GL(n,C)-orbits of elements of gl(»,C) which
are close to M. Therefore, M, has to contain some
parameters.

Normal forms of elements of Lie algebras or, equiv-
alently, representatives of conjugacy classes were often stud-
ied.>* Analogs of the Jordan normal form M, in the case of

""Work supported in part by the Natural Science and Engineering Research
Council of Canada and by the Ministére de I'Education du Québec.
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gl(n,C) were found for all real and complex Lie algebras.**
The discontinuity of the dependence of the normal forms on
the original matrix M and on the transforming matrix g was
always disregarded. Thus the question concerning the de-
scription of the versal deformations M, of M, can be asked
independently for matrices M belonging to any of these Lie
algebras.

The problem is of particular importance in applications
when the matrix M arises as a result of measurements, i.e., its
matrix elements are given with errors. Besides the case
Megl(n,C) studied by Arnold,' the versal deformations were
found also for Megl(n,R}in Ref. 5, and for the symplectic Lie
algebras sp(2n,C) and sp(2n,R) (cf. Ref. 6), by Galin. Investi-
gation of the symplectic case was motivated by classical me-
chanics. The Arnold normal forms M, of elements of the
symplectic Lie algebras (Hamiltonian matrices) allow, for
instance, the transformation of quadratic Hamiltonians®’
and Hamilton equations to a simple form depending con-
tinuously, and even smoothly, on any Hamiltonian known
only approximately.

In the relativistic and quantum physics the orthogonal
groups also play an important role. The purpose of this arti-
cleis to find the Arnold normal forms of matrices M belong-
ing to the Lie algebra o(n,C). General results are illustrated
on the case 0(6,C) as the potentially most interesting in phys-
ics. Indeed, among real forms of 0(6,C) and their subalge-
bras, one finds practically all the Lie algebras of relativistic
physics.

Throughout the paper a Lie algebra (group) is identified
with its natural representation in terms of matrices. In order
to underline similarities and differences between the orthog-
onal and symplectic cases, they are treated simultaneously.

Section 1I contains a standard description of elements
of the Lie algebras o(n,C) and sp(2#,C), and their “Jordan
normal forms.” In Sec. III versal deformations and their
properties are recalled. The Arnold normal forms of orthog-
onal and symplectic matrices are found in Sec. IV. Bifurca-
tion diagrams of two-parameter families of orthogonal ma-
trices in general position are described in Sec. V. Section VI
contains explicit description of minimal versal deformations
of 0(6,C) matrices.
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Il. CONJUGACY CLASSES OF ELEMENTS OF COMPLEX
LIE ALGEBRAS

Here we give representatives (“Jordan normal forms”)
of elements of conjugacy classes of the Lie algebras
o(2n + 1,C), o(2n,C), and sp(2n,C) which are further used in
Sec. IV. They are the analogs of the Jordan normal forms in
the case of the algebra gl(n,C). The results are well known,
and our presentation follows Ref. 4.

Orthogonal and symplectic cases are treated simulta-
neously, 1(,C) and L(¥,C) denoting the corresponding Lie
algebra and Lie group, respectively. Unless otherwise stated
the two cases differ only by the value of the parameter e.

€ = 1 {resp., = — 1) in the orthogonal (resp., symplectic)
case. Below we often use the following # X #n matrices.
0 1
1
1
111 = ’ Jn = ’
) 1
0
1
-1
F, = 1 (2.0)
€

The group L(N,C) is the group of operators on C" pre-
serving a given nondegenerate bilinear form on C . The form
[ issymmetric for O(&,C) and skew-symmetric for Sp(2n,C);
Jfis unique up to isomorphism.

Each matrix X satisfying

KT=€K, detK #0. (2.1)

specifies an invariant form f(x,y) = x ’Ky. Two matrices X
and K ' both with the property (2.1) and the same value of €
are equivalent. That is, K’ = gKg ™' for some geGL{N,C).
L(¥,C) is then represented as the set of nonsingular matrices
geC ¥ >N such that

Vx,y flx,y)=/flgx,gy)=x"g"Kgy. (2.2)
This implies
g Kg=K. (2.3)

A matrix MeC " *" belongs to the Lie algebra I(N,C) iff the
“infinitesimal equivalent” of (2.2) is satisfied, i.e.,

Vx,y 0= (Mx,y) + (x,My)=x"M"Ky + x"KMp,
(2.4)
which implies that

KM + MK =0. (2.5)

In order to specify an element of 1{(V,C), one has to give
two matrices M and X satisfying (2.1) and (2.5). Our matrix X
can change from case to case in order to get M in the simplest
possible form (cf. Ref. 4).

Two elements M and M ' of 1(N,C) belong to the same
L{N,C)-conjugacy class or to the same orbit [are L(N,C)-con-
jugate] iff

M’ =gMg~"' for some geL(N,C). (2.6)
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Thus, the 1(¥,C)-orbit, Orb{M ), containing the element M is
defined as

Orb{M ) = {gMg~'|geL(N,C)}. 2.7)

It is convenient to split the set of orbits of IV, C)-ele-
ments into three mutually exclusive sets. To the first set be-
long the completely indecomposable elements. The second
consists of decomposable elements which are orthogonally
indecomposable. The third set contains the decomposable
elements. These are the other 1(¥,C) matrices, which are dia-
gonalizable or partially diagonalizable. Naturally this is the
most “abundant” type of elements. Let us point out that
nonzero eigenvalues of any element of I(¥V,C) occur in pairs

+a.

We now list the normal forms. It is convenient to
choose the matrix K for each case separately as in Ref. 4.
This allows us to write the matrix M in a very simple way.

Elements of the completely indecomposable sets are
L{~,C)-conjugate to

M, =Jy, K=Fy. (2-8)

According to (2.1), K 7 = €K. Therefore, (2.8) and (2.0) imply
that

6__{+1 for N odd

—1 for N even. (29)
Thus the normal form (2.8) occurs in o(2r + 1,C) and
sp(2n,C), but not in o(2n,C). For simplicity we call (2.8) the
normal form of case 1.
The orthogonally indecomposable but otherwise de-
composable elements appear only for N even, N = 2n. They

are L(N,C)-conjugate to

A 0 0 I,
MJ= IS E K= y
0 -4 eI, 0

where

A=al, +J,, acC. (2.11)

A is simply a Jordan block. We distinguish the value « = 0
and call the corresponding normal form (2.10) case II (for
€= + lniseven, fore = — 1 nisodd). When a0, (2.10)
is the normal form of case III.

The indecomposable Jordan normal forms are summa-
rized in Table L.

The Jordan normal form of a decomposable element is a
direct sum of normal forms (M, K ") of types I, I1, and I1I:

(2.10)

K= @K(i) Ll

i=1

M, = ealM,"", (2.12)
with the obvious restriction that orthogonal (symplectic) ele-
ments contain only orthogonal (symplectic) summands. Fur-
thermore, two decomposable normal forms which differ
only by permutation of terms of the direct sum are L(N,C)-
conjugate.

lll. VERSAL DEFORMATIONS

Here we consider deformations of elements of a com-
plex Lie algebra ¥, corresponding to a Lie group G. A defor-
mation of an element M€Y is a family M (1 ) depending ho-
lomorphically on complex parameters A,,...,4,, such that
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TABLE I. Indecomposable and orthogonally indecomposable Jordan normal forms of elements of the Lie algebras gl{n,C), o(2n + 1,C), o{2n,C), and sp(2n,C).

Matrices I,, /,, and F, are defined in Eq. (2.0).

Algebra Name Case M, K Eigenvalues
glin,Cj indecomposable af, +J, — aeC
completely
2 1,C ) J.
oi2n + 1.6) indecomposable I et Fansy 0
€= +1
_ decomposable but - (J n 0 C) I ,.) 0
o2n.C) not orthogonally 0o =-JrI . 0
€= +1 - (al,, +J, 0 ) (10 1,,)
0 —al, —JT . 0 ta a0
(21,0) completely I J F 0
R indecomposable 2" .
=_1
decomposable but - (J,. 0 ( 0 I, o
not orthogonally 0o —-J -, 0
- (aI,, +J 0 ) ( 0 1,,) 0
0 —al, —JT -1, 0 ta, a#
M (0) = M,,. We are interested in versal deformations of M, Ty, Orb(M,) = {[CM,]|Ce¥ }. (3.3)

i.e., deformations that “contain” representatives of orbits of
all deformations of M, in ¥

Definition: M (A,,...,A,,) is a versal deformation of M, iff
for any deformation M ‘( u,,...,ut; ) of M,, there exist holo-
morphic mappings

@:VCCr -C™,
g:V—G
such that ¥ is a neighborhood of 0 in C*
P(0)=0, gl0)=1,
M'(p)=g(pM (@ (ug™ (1) (3.1)

Intuitively M (4 )is versaliff M (4 ) and the conjugates of
its elements under the action of G fill up a neighborhood of
M, Therefore, theimage of M (A )and Orb(M,) must intersect
properly and the sum of their dimension must be at least the
dimension of & . Since we are interested in local properties,
their precise formulation is in terms of tangent spaces,
namely:

Lemma(Arnold'): M (4 )is a versal deformation of M, iff
M (1) is transversal to Orb(M,) at M,,, i.e.,

M.T,C" + Ty, Orb (M) =T, &, {3.2)
where T,C ™ is the tangent space of C™ at the point
0eC™, T,,, Orb (M) is the tangent space of Orb(M,,) at M,,

T,, ¥ isthe tangent space of & at M, and M. isthe deriva-
tive of M at 0eC ™.

Therefore, the minimal number of parameters of a ver-
sal deformation is the codimension of Orb(M,).

The action of G on ¥ gives us the map

v:G—~Y, Yigl=gM,g '

We remark that OrbM, = Imy. The tangent space of OrbM,,
is the image of the tangent space of G at the identity under
the derivative map ¢.:

VT,G=9->T, 9 =Y, ¢(C)=
From this we get

[CM,].

707 J. Math. Phys., Vol. 23, No. 5, May 1982

The codimension of OrbM, is the dimension of the centra-
lizer of M|, defined by

Cent , M, = {Ce! } = Ker¢.. (3.4)

We specialize now to the case where elements of G and
% are complex matrices. On % we have the following inner

product (4,B ) = tr(AB *), where B* = B’ is the adjoint of
B (complex conjugate, transpose of B ). Among all possible

deformations of M,,, we choose one, M (4 ), which is orthogo-
nal to OrbM,,. We use therefore the following lemma.

Lemma {Arnold '): Be% is orthogonal to Orb(M,)) iff
[(B*M,]=0.

The problem is now reduced to the computation of the
adjoint of the centralizer of M,. Arnold did the calculation
for the case G = GL(n,C), ¥ = gl(n,C), and M, = M, the
Jordan normal form. We recall here his results since we use
them later.

ol =

Centralizer of M, in gl(n,C)
(1) M, is a Jordan block M, = al, + J, [cf. (2.0)]

C €Cent,, M, iff C= (\\) 35)

(each oblique segment denotes a sequence of identical
numbers).

(2) M, is a Jordan matrix with a single eigenvalue @ and
Jordan blocks J,,...,J,. Then CeCenty,.c, M, iff

N
Nof
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(3.6)

Az




where each oblique segment denotes a sequence of identical
numbers. Here the figure is done for » = 3.

(3} If M, = & ,M 9, where the sum is over all distinct
eigenvalues of M, then CeCenty,, M, iff C = & ,C“ with
[CxMe]=0.

Thus the versal deformation of the Jordan matrix M,
with a single eigenvalue & and three blocks (r = 3) which is
orthogonal to the orbit Orb(M,) at M, and depends on mini-
mal number of parameters is given by M, + M (1), where

NN,
NN

NN N

5
/ //I//7/

Each oblique segment denotes a sequence of identical num-
bers and to different segments correspond different
parameters.

Often it is convenient to consider the minimal versal
deformation of M, with minimal number of nonzero entries
inM (A ).Itcanbechosen, forinstance,asM, + M '(4 ), where

(3.8)

S|

There is an independent parameter for each entry placed on
a dark line. The number of nonzero entries of M (1 } equals
the number of independent parameters of the deformation;
the deformation is versal but not orthogonal to the orbit.

When M, has several eigenvalues, the versal deforma-
tion of M, is just the direct sum of the deformations de-
scribed above for each eigenvalue.

IV. MINIMAL VERSAL DEFORMATIONS OF ELEMENTS
OF o(N,C) AND sp(2n,()

In Sec. I11, the construction of minimal versal deforma-
tions of the Jordan normal form of elements of {N,() was
reduced to the computation of the centralizers

Cent,y M, = [C|[CM,]=0 & KC+C'K=0]
4.1
for each normal form specified by M, and K. In this section

we first find the centralizers and then describe the minimal
versal deformations.

A. Centralizers of normal forms in I(V,C)

The computation is straightforward but lengthy. It con-
sists in imposing the two requirements in (4.1) on a general
matrix C. Here we just give the results. We start with the
orthogonally indecomposable cases: cases I, I1, and III of
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Table I.
{@Case Il M, =J,,K=F,:
N = 2n [for sp(2n, C)] or N = 2n + 1[for o(2n + 1)].

0_. o%
NN\
AN (4.2)

Each solid line indicates a unique complex parameter repeat-
ed on each row. The dimension of the centralizer is d = n.

CeCentyy M, iff C=

(b) Case II:
el %) a, ) v
T \o —ur) T, e
(4.3}
Cy,= —C,,"
¢\ Ca I S
C= eliN,C) iff {C,= —eC.,",
CZI C22 T
G = —€Cy,
(4.4)
CeCent, oM, iff
N
\ﬁf-“/ 0 /0
o/ ./
s/ /
0 <
L/
0
C= . (4.5)
0
/0 €T
o/ s

e \
o/o/o'}()/\

Each solid oblique line indicates a parameter repeated from
row to row. Each dashed line indicates that the same param-
eter is repeated along each line but its sign varies from row to
row. Depending on the parity of n, C,, and C,, have a dashed
line or a line of zeros on the side diagonal.

Ife = — 1, Chasaformsimilar to(4.5),but C,,and C,,
start with a coefficient in the corner instead of a zero. The
dimension of the centralizer is

de [Zn—e if n is odd,
~ 2n if 7 is even.
(c) Case III:
aIH + Jll 0
M, = e
0 - aIn - J r:
(1) ves
= el > =2n. (4.6)
Then
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¢, C
C=( 11 12) C t M
Co O

iff Cis given asin (4.5) with C,, = C,, = 0. Therefore, d = n.

Next, let us turn to centralizers of decomposable Jordan
normal forms of 1(¥,C}-elements. M is now a direct sum of
blocks of types I, II, and III. X is the direct sum of the corre-
sponding small K ’s. The centralizer of the general case can
be built up in an obvious way out of all possible pairs of
blocks as a matrix of matrices. Thus it suffices to describe the
centralizers of all possible M, which are direct sums of two
blocks of types I, I1, or III.

Notation: Below we describe centralizers as matrices of
triangular matrices. An oblique solid line indicates one com-
plex parameter repeated along the line. A dashed line indi-
cates one complex parameter changing sign from row to
Tow.

(d)Cases I + I, II + III, III + III' with the eigenval-
ues of I’ distinct from those of I1I: In these cases the centra-
lizer is just the direct sum of centralizers of each block.

(e)Case I +I':

M,=J, ®J,, K=F, oF,, (4.7)

where J and F, are asin (2.0)and N,>N,: N, and N, are
simultaneously odd or even depending on € = + 1. Then

C= (C”

Cl2> .
Cent M, |iff
C,, Cyp eCentyy,  y,oM; 1

N

AN

9

(4.8)

I -

G, = —€ KECITZKI

If the parameters appearing in C,, are denoted 4,,...,Ay, , as
they appear in the first row from right to left, then the corre-
sponding parameters in C,, are 4,, — A4;,....€4y, in the
first row from right to left. N, = 2n, + 1 or N; = 2n; de-
pending whethere = + 1. Thend =n, + n, + N,.

(f) Case I + II:

I, o I,
MJ:JN,®< —J:;), K=FN'$(€I,,Z ),

(4.9)
N,=2n,,N,=2n,or N, =2n,+ 1. Then
CeCentyy, , n,oyM, iff
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(4.10)

(__.N: + N:J

-Cy, Fy,

(figure is done for N,>n, and € = + 1). If paremeters ap-
pearing in C,, (C;,) are denoted by A,,...A,, (£ 1,--sdn,) 3S
they appear in the first row from right to left, then the pa-
rameters of the last column (first row) of C;, (C3) from down
to up (left to right) are —A,,..., —4,, ( — €ypey — €1, ).
We have

de {nl + 2n, + 2 min (n,,n,)
n, 4+ 2n, — € + 2 min (n,,n,)
(g) Case IT + IT":

Jo, J.,
MJ = _JT ® —JT >

if n, is even,
if n, is odd.

. (o In,) (0 1n=> 4.11
=l o ® e, 0) (4.11)
CeCent,m,‘ + 2,.1‘(:}MJ iff
C=(C,'j),",':l ..... 4
o7 o N s
\/ / \// /
o 4 4
P 7
J Ve
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Figure is done for e = + 1 [difference for C,,,C,,,C;,,Cy; if
e= —lasin{4.5)] lfe = — 1,C,,,C;,,C;,,C,, start with a
parameter in the corner

2n, + 6n, if n,n, are even,
d= {2n,+ 6n,—€ if n, +n, is odd,
2n, + 6n, —2¢ if n,n, are odd.

(h ) Case III + II1' with same eigenvalues:

2 fal, +, 0 )
M=o\ o —al, ~J")

”; ",

(o 1) (o 1)
K=\, o)®\a, o)

n,>n,. Then CeCent,,, . 5, M, iff Cis given as in (4.12)
with C; = 0 when i 4 j is odd. Therefore, d = n, 4 3n,.

(4.13)

B. Minimal versal deformations of elements of {/V,C)

Asin Arnold’s paper,' we give here two minimal versal
deformations. The first one is orthogonal to the orbit. The
second one has the minimal number of nonzero entries, but,
unlike Arnold’s case, the number of nonzero entries need not
be equal to the number of independent parameters.

Theorem 1: Let M,€l(N,C) be in Jordan normal form.
Then M, =M, + C*(4)is a minimal versal deformation of
M,, where C (4 )is a generic element of Cent, ., M, depend-

ing on d parameters. (C* = C' is the complex conjugate,
transpose of C.) If M, has s blocks of type I and of order
N\ >N.>N_ (N, =2n, 0or N, =2n; + 1), t blocks of type I1
and of order 2m >2m, > >2m,, u of these with m; odd, the
rest with m, even, r distinct pairs of eigenvalues ( + «;), and
for each pair ( + ;) v; blocks of type III and of orders

2m) >2m) >->2m) , then the dimension of Cent,y , M, is
given by

d=3 S Ri-lpm+23 Qi—lm + 3 n
7 1 i—1 P= 1 (=1

+ S —UN+2 3 z min(V,, m,) — eu. (4.14)

=1 j=1

To compute versal deformations with minimal number
of nonzero entries, we find the general form of a tangent
vector to Orb(M, ), i.e., a vector [D, M, ], Del(N,C). The gen-
eral form of an element [D,M, ], is related to the general form
of the adjoint C * of an element CeCent(M). Corresponding
to each full line (dashed line) of C *, we have that the sum
(alternated sum) of the elements on the line is zero for
(D, M,].

We give here the minimal versal deformations M, with
minimum number of nonzero entries in each of the cases
studied in part 4.

(@)Casel:M, =Jy, K=F,:ThenM, =M, + M,(A)
with
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0
A,
M=\, , (4.15)
A”
0 4, 0 A, 0
e=+1, N=2n+1
0
0
0
Mﬂ- - ’
i) i, 0 (4.16)
A

€ = —I,szn.

{b)Casell: M, and K givenby (4.3): M, = M, + M,(1)
with

4 e )
k
0
vy
Xl ........ Xl'l \)k eee O Vl 0
Mz(/l ) = >
0 H 0 - My —Xl
-1y
0
L_“'k _Xn)
(4.17)
€= +1,
. 3
Yk
A e A ' vy
Mz(i ) = ’
K1 —Xl
"
Y
n
L )
e= —1 (4.18)
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Depending on the parity of n, i, and v, are on diagonals or
not.

(c) Case III: M, and K given in (4.6): Then
M, =M, + M, ) where M,(4 ) is obtained from M,(4 ) by
takingv, = ¢, =0.

(d) Cases I + I, II + III, IIT + III' with the eigenval-
ues of III' distinct from those of IIT: direct sums of the pre-
vious results.

(e) Case I + I': M, and K are given by (4.7):

M, =M, + M) with

M,(A)

e

a, ves a

ny

M= T M(p)

a,

(4.19)

where M (4 Jand M i) are asin (4.15) or (4.16) depending on
€.

(f) Case I + II: M, and K given by (4.9):
M,=M, + M(A)with

M)

M, ()

= M, (W

(4.20)

The figure is done for N,<n, unlike (4.10). M (1 ) is as in
(4.15) or (4.16); M,( i) is as in (4.17) or (4.18).

(8 CaseII + II': M, and K given by (4.11):
M, =M, + M(A)with
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M)

St "‘n> L"51 a’an
5] <
.12()\) -
ril ceemeny vy - vy
vl 61
v 5
") )
M, (W)
&1 Y, 2
Enz Ynz
(4.21)

M,(1)and M,(u) as in (4.17) or (4.18).

(h) Case III + III' with same eigenvalues: M, and K as
in(4.13): Then M, =M, + M (A )with M (1 )obtained from
previous case by replacing M,(4 ) and M,( u) by M;(1 ) and
M,( 1) and by taking the £;’s and §,’s to be zero.

Remark: As in Arnold,' this is one choice of versal de-
formation with minimal number of nonzero entries. There
are other possible choices that the reader may be interested
in considering.

Theorem 2: Let M (u,,..., it,, ) be a holomorphic family
of elements of I{V, C) with M (0) = M, and let M, be the
normal form of M. Letd = codim orb{M ). Then there exist
mappings

@:C"—C9 @0)=0, @ holomorphic,

gﬂ:m—+L(AGCL

suchthat M {u) = g{ )M, (@ (p))g ' u), where M, isa ver-
sal deformation of M, either the one given in Theorem 1 or
the one described above.

g holomorphic,

V. BIFURCATION DIAGRAMS

Let us consider families of elements of I{V,C) in general
position (see below for a definition), investigate possible
structures of the matrices of each family, and describe how
the structure changes when we change the value of the
parameters.

Definition: Two matrices of {NV,C) have the same struc-
ture or belong to the same stratum if their centralizers are
conjugate under the action of L (N,C).

It is easy to verify the following proposition:

Proposition: Two matrices of 1(N,C) have the same struc-
ture iff their Jordan normal forms have: (i) the same number
of pairs of eigenvalues + ..., + a, with the «; distinct
and either: 4 a; are simple nonzero eigenvalues or: a; =0

J. Patera and C. Rousseau 711



TABLE II. Strata in o{V,C) of codimensions ¢<3. A stratum is denoted by the product of determinants of irreducible blocks of one of its Jordan matrices.

c 0 1 2 3
0 0’ (ta), 0°, 0°, {+al0’, (£ a)’(£B)0
(ta) {(+a) (+a(£B) {(tal(+£B), (a0,
{+a)0’, (+al0%, (+al(£B £V O, 0°,

(ta? (talxa)

and the eigenvalue O has multiplicity 2; (ii) the same number
of multiple nonzero eigenvalues and for each of these pairs
the same blocks of type I1I {iii) the same blocks of types I and
II when the eigenvalue 0 has multiplicity #2.

Each stratum is a semialgebraic manifold (defined by
equalities and inequalities). The splitting into strata is a finite
semialgebraic stratification of 1{¥,C). The transversality
theorem gives us:

Corollary: The set of families of elements of {¥,C) trans-
versal to all the strata is dense (a countable intersection of
dense open sets).

Definition: A family of matrices is in general position if it
is transversal to all strata. The bifurcation diagram is the set
of parameter values which correspond to matrices with mul-
tiple eigenvalues.

The bifurcation diagram is a finite union of smooth
manifolds; each manifold corresponds to a set of matrices
with the same structure. The codimension of a manifold is
equal to the codimension of the corresponding stratum in
I(¥,C). We have the property that a k-parameter family of
elements of I(¥,C) in general position can have only singular-
ities of codimension <k. We are interested to know which
structures can occur in a k-parameter family in general posi-
tion. The codimension of a stratum can be shown to be

6 =1 if 0 has multiplicity 2

I{¥,C) = o(N,C
c=d——1-21—5 and (N,C) = o(N,C)

2 a#0
8 = 0 otherwise, (5-1)

where the summation extends over all nonzero eigenvalues
a, and d is given by (4.14). Clearly a single pair + a of eigen-
values does not contribute to the codimension.

In order to describe bundles of low codimension con-
tained in o(N,C), N = 2,3,..., we denote a Jordan matrix by
the product of determinants of its irreducible blocks. In par-

ticular, the orthogonally indecomposable matrices of the
types I, I, and III of Table I are denoted respectively by 0",
(+£0)" and (£ a)"

Bundles of codimensions ¢<3 in oV, C) are given in Ta-
ble II; Table III contains bifurcation diagrams of two-pa-
rameter families in general position in o(V,C). Similar results
for symplectic algebras are found in Ref. 6.

Vi. EXAMPLES

Here we give the Arnold normal forms of all elements of
0(6,C). In each case we calculate d, the codimensions of the
orbit, and ¢, the codimension of the stratum. We list first all
elements of o(3,C), 0(4,C), and o(5,C). One can find their Ar-
nold normal forms as parts of the Arnold normal forms of
elements of 0(6,C).

Remark: Parameters are called 4,’s when they appear
both in the orbit and the stratum and u,’s when they appear
only in the stratum.

Table IV gives a list of all Jordan normal forms of ele-
ments of o(3,C), o(4,C), o(5,C), 0{6,C).

Versal deformations of elements of o(6,C)

In each case we give d the codimension of the orbit and ¢
the codimension of the bundle.

(1) 0°0>:

0 1 0

A, 0 1

0 A 0 Ay A, A
—As 0 1 oY)
A4 A, 0 1
— A, 0 4, 0
d=c=>5.

TABLE I1I. Bifurcation diagrams of 2-parameter families of matrices in general position in o(V,C).

3 3 2 5 2 3 2 .2 2 2 . 2.3
= - = )= = o=
(ta) 4)\1 27>\2 0 xz(xl 2>\2) 0 070 (Xl XZ) 0 (+xa) " (B) )\1\2 0 (#a) 70 Xl 2 0
€—{1a) (1)
1
e %
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TABLE IV. Strata in 0(3,C), 0{4,C), 0(5,C), 0(6,C).

o(3,C) 0(4,C) o{5,C) 0(6,C)
0%, 000 0%0, 0000 0700, 00000, 0%, 0°000, 000000,
(£a) 0 (a)+8) (£ @)000, (+a)+8)0 ( £ )0000,
(ta)P (£0) (£ al0, (£0)%0, (el £B)N £
(ta)ta) 0%, (£B)0% (+a)+a) (xa(+8), (taltal+h)

(£a) £ 0P (£ a)0%,

0%,
(taf, (raftal+a)
{taf{ta)

The following Jordan normal forms belong to the same strata:

(ta)f+B)and(£a)00
(taf(+af+B)and(ta)ta)
(ta(+Bity)and(£a)+B)00
(taf(+B)and(+a)00

(2) 0°000: (M{xall+a)l£pB):
0 1
As
A, 0 1 @t S
0 A4, 0 A A, A T ‘
, — A4, a+ A,
—4, 0 As A —A —a—A4 ’
—13 —/{5 0 /17 ? IB+#
) —A —4, 0 :
4 6 7 _ﬁ_luz
d=c=1.
. . ) . d=5 ¢=13
(3) 000000: We get an arbitrary antisymmetric matrix:
d=c=15. (8) (£ a)f + 0)%
(4) ( £ a}0000: a+u,
a+”l —a_ul
ey, 0 1 0 —4,
0 A, A, A, A A A
-4 0 Ay A -4 0 =4
—A, =4 e As -1 =4
—A; —As —4¢ 0 d=15 c¢=4
d=17 c¢=6.
(9)( + a)00:
Bl £B)N+y):
a+
" M L
—a— # 0 1
B+#2 s ’
—B—t, 4 0 1
Y+ A 04
=Y —H3 4 0
d=3, ¢c=0. d=3, c¢=2.
(6) (+ (£ B): (10) (£ 0F00:
a 1 0 1 0 — 4 Ag Aq
AI a+,u.1 /12 /11 /{3 O —A«() _47
—a -4, 0 A, O —4, O 0
—1 —a-p -4 0 -1 -4 00
B +p, A 00 =40 As
—B—u, A, 0 0 —4 -4 O
d=3, ¢c=1 d=c=09.
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(11) 0°0:

0 1
A, 0o 1
0 0 1
A, 0 1 '
0 Ay 0 A, 0 A4
— A5 0
d=c=3
(12)( £ @)’
a 1
a 1
A, A a+p
—a
-1 —a
-1 -
d=3, c=2.
(13) (£ af £a)l £ a):
a + py Ay As
—a— Ay
—14 a+ﬁ, /{7
_A’S _a_/{l
—/16 —ig a+/{2
—As -4,
d=9, c¢c=8
(14)(+a)(+a)
a 1
Ay atp, —4;
—a -4,
-1 —a—pu
Ay a+A,
As
d=5, c¢c=4.
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A theorem on A-proper mappings and its application in scattering theory
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We propose a projectionally complete scheme yielding an approximate solution of the functional
equation Bf = g in a Hilbert space. We prove that B is an A-proper mapping. The result is
applied to an integral equation with a kernel appearing in multichannel scattering theory.

PACS numbers: 02.30.Ks, 02.30.Mv, 02.30.Rz, 11.80.Gw

I. INTRODUCTION

Multichannel scattering integral equations of the
structure

f=g+A4f, (L1)
defined in a Hilbert space 5%, with ge” and 4 being a linear
mapping from 5 into #°, have been solved successfully us-
ing the moments method' and the Padé method.>> The mo-
ments method solves the projector equation

piagin — P("’g + P‘"’AP‘”{/'("’, (1‘2)

where P is the orthogonal projection from 57 on the
subspace

T'" = linear span of {4 “g|k = 0,1,...,n}. (1.3)

The solution /" converges strongly to f(Ref. 4) if 4 is com-
pact, 1ep(4 ), and feT ., where

T,,= v T§. {1.4)
n=0,1,.
The Padé method calculates (4,f) with he7# by solving a
projector equation like Eq. (1.2), but with P " now given by

T'". , =linear span of {4 **h |k =0,1,..,n}, (L5
POy =1, (1.6)
P =1 (1.7)

Recently, integral equations for multichannel scatter-
ing theory have been given by Chandler and Gibson® and
Kroger and Perne® with kernels of a simple structure in con-
trast to the Faddeev-type equations. But these kernels are
not connected and hence not compact. Thus it is not guaran-
teed that they can be approximated separably. Nevertheless
one can try to solve the equations approximately using pro-
jector schemes. There are methods, introduced by Petry-
shyn,” which solve functional equations with so called 4-
proper mappings, which are more general than compact
mappings.

In Sec. II we propose a projectionally complete scheme
to solve Bf = g. We take the linear space spanned by g, Bg,
B?g,--- as projectional subspace. We prove that the projec-
tional solution converges strongly to the solution fand that
Bis A-proper.

In Sec. III we investigate an integral equation with a
nonconnected kernel of the type appearing in multichannel
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scattering equations and show that the previous results can
be applied.

Il. THEOREM ON A-PROPER MAPPINGS

Let us start with the definition of 4-proper mappings
and projectionally complete schemes givenin Ref. 7. Let X, Y
be Banach spaces, D a given subset of X, 7: D C X—Ya
possibly nonlinear mapping and I" = {X,,P,;Y,,0, } a suit-
able approximation scheme for the equation

ITx=y,(xeD,yeY). 2.1)

The scheme I is called projectionally complete for
(X,Y) provided that {X, }C X and {¥, }C Y are sequences
of monotonically increasing finite-dimensional subspaces
with dim X, = dim Y, for each n and P,: X—X, and Q,,:
Y—Y, are linear projections such that P,x—x and Q,y—y
for xeX and yeY. Here and in the following —denotes strong
convergence. Let D, = DX, T,,: D,—Y,, T, =Q,T|,
and x,, be the solution of the approximate equation

T,x, =Q,y. (2.2)
The mapping 7 is said to be A-proper with respect to the
projectionally complete scheme I if 7', is continuous for
each n and if {u, |u, €D, } is a bounded sequence such that
T, u,—v for some v in Y, then there exists a subsequence
{u,,v} and u€D such that 4, —u and Tu = v. Now we can
prove the following result.

Theorem: Let 57 be a Hilbert space, let g be an element
of 57, let B: " —5% be a linear, bounded mapping, and
assume the origin O to lie in the resolvent set p(B ). We define
T T 55, Tse T 5 in analogy to Eqgs. (1.3) and (1.4). Let
P be the orthogonal projection onto 7', and let Q * be
the orthogonal projection onto T'')s, . Let fbe defined as the
solution of

Bf=g, (2.3)
and assume /'to be an element of T, . Let /™ be defined as
the solution of

Q"WBP I = Qg (2.4)
Then we claim that P"f™ converges strongly to f, the ap-
proximation scheme is projectionally complete, and B is an
A-proper mapping.

Proof: Without loss of generality let f"eT})
thus Bf "eT ) and £ fulfills
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Bft" = Q. (2.5)

The definition of Q™ implies the existence of £, The as-
sumption f€7’5 , implies the existence of a sequence
f"eT, such that

fos. (2.6

The boundedness of B and Eq. (2.3) imply

Bf g (2.7)
From Bf"eT {5 and ||Q || = 1 it follows that

Bf" —Q ""g—n>0- (2.8)
Thus Egs. (2.7) and (2.8) yield

Q"g—g, (2.9)
while Eqgs. (2.3) and (2.5) yield

B(f—f") =g~-Q"g.

The property 0 € p(B ) implies the existence and
boundedness of B ~', thus follows from Egs. (2.9) and (2.10)

£t

It remains to show the projectional completeness of the ap-
proximation scheme and the A-properness of the mapping.
First, we prove the following relation:

(2.10)

(2.11)

(2.12)

The implication D is trivial; now consider C: Eq. (2.7)
implies the existence of a sequence Bf "eT ) C Ty 5.,
which strongly converges to g.

T pgis closed, hence geT'y 5. For each ueT ), there exists a
sequence T §,

Ty, =Tgp,.

U >y, (2.13)
which can be written as
U =ufleg + 3 ulB'g. (2.14)
i=1

One has

uy'geTy ., i u"B €T} p.""C Ty p,, hence u'"eTy 5. . Be-
i=1
cause of Eq. (2.13) and T 5, being closed, one has u€Tp p,,
which proves Eq. (2.12). T, is a Hilbert space.
In order to establish the correspondence to the general
definition of a projectionally complete approximation
scheme and an A-proper mapping we define

X=Y=D=T,, T=B|,,

X, =T%, P, =P""|TM, (2.15)

Y, = Tg,)sg’ Q, = Q(n)lrﬂ‘g,

D, =T, T,=0";, Blyy.

Equation (2.3) reads

Bl f=8 (2.16)
and Eq. (2.4) reads

Q("),T,,_KB |r1,;le{") = Q(")]T,,_,,g- (2.17)
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TG, and T, are finite-dimensional, monotonically in-
creasing subspaces of the same dimension. Because of Eq.
(2.12) one has for each heTp,

P"h—sh, Q"h>h, (2.18)

(n)
Q" ‘TB@B IT(;.'x

is continuous for each n, because Q'™ and B are bounded
mappings.

Let {u""|u""eT‘,;'_’g}eT . be a bounded sequence such
that

o T,,,,,Br',;;“(")‘ju (2.19)
for some veT,,. Equation (2.19) can be written as

Bu"—. (2.20)
Because Ocp(B ), B ' exists and is bounded,

u""—">B =, (2.21)
with weT, ., hence

B |T“w =, (2.22)

which completes the proof of the theorem. This yields the
following corollary.

Corollary 1: Let 77 be a Hilbert space, ge 77, let A4:
#°—7 be a linear, bounded mapping with z,ep(4 ). We
define

T‘:.)g = T(z:)— Ag? TA,g = Tzo—A,x’

T T,

zy— Afzg— A)gr T 2, — Az, — A)g
in analogy to Egs. (1.3)and (1.4). Let P, Q " be the orthogo-
nal projections onto T''y),, T, . _ ., respectively. Let f,
/™ be defined as the solutions of
(2o—A)f=g,
and

(2.23)

Q "z, — A )P = QMg (2.24)

respectively. We assume feT, .. Then f ) converges to fin
#. The proof follows from B = z, — 4 and the above
theorem.

Corollary 2: We assume the conditions of Corollary 1,
except feT, .. Instead we assume that the resolvent set p(4 )
has a specific form, namely such that there is a tongue-
shaped extension from the region outside the spectral radius
r{4 ) to the point z, (Fig. 1). Then the result of Corollary 1
holds.

FIG. 1. Schematic plot of the spectrum {4 ) with a tongue shaped extension
from the region with |z} > 74 ) to the point z,.
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Proof: We will show feT , ., which completes the condi-
tions of Corollary 1. The function F(z) = (z — A4 )" 'gisan
analytical function for zep(4 ), i.e., in particular for |z| > H{4 ).
For |z| > r{4 ) the Neumann series converges,

2": —l—(i)"g—%z —A4)7'g.

k=01Z \2 n
Thus the property F(z)eT,, holds for |z| > r{4 ), which im-
plies F(z)/T, , = Ofor|z| > N4 ). F (z) is analytical for zep(4 )
and so is F (z)/T, . Thus the analytical continuation of
F(2)/T,, from the region |z| > 14 to z = z, yields
F(zo)/T,, =0and thus f= F(z)eT .

(2.25)

ill. APPLICATION TO SCATTERING EQUATIONS

Transition operators 7'V, which describe the ampli-
tudes for N-nucleon scattering processes, obey Faddeev-type
coupled integral equations of the form

T — ™) +K(N)(T(N‘ li)T(NJ' (3.1)

The kernel K ) depends on (¥ — 1)-nucleon transition oper-
ators TV~ . The kernels K V) are disconnected; that
means, the integration is not performed in all variables. An
example for an integral equation with a disconnected kernel
is

b
Flry) = gley) + f dx’ k (e (). (3.2)

This kernel leads to a noncompact operator. One aims to set
up integral equations for 7'") with connected kernels, which
is usually possible by iteration of Eq. {3.1). Connectedness of
the kernels and adequate treatment of their inherent singu-
larities leads to compact kernels, which allows an approxi-
mate solution of the integral equation by some standard
techniques like separable approximation of the kernels, for

«PLMgim(K |f),

. * I ’ ® ’ ! 5 - '
= lim dp p2 5 dq q2 2—(p—'p—)-§LM,L'M'51m,I'm’

example.

In Refs. 5 and 6 scattering integral equations have been
given, which have the advantage of simply structured ker-
nels, compared with the kernels of Faddeev-type equations.
But these kernels are disconnected and cannot become con-
nected by iteration.

We want to show now for the three-nucleon case that a
disconnected kernel, which is a typical part of the kernel of
integral equations of Ref. 6, is 4-proper. That means that an
integral equation with only that kernel is approximately
solvable by projector methods. We introduce some notation.
The center of mass motion is dropped. The index a denotes a
particle and the two-body subsystem, which does not con-
tain the particle a. p, is the relative momentum between
particle a and the c.m. of subsystem a, g,, is the relative
momentum between the particles in the subsystem a, m,, is
the reduced mass of particle & and the subsystem o, and 1, is
the reduced mass of the particles of subsystem a. |p,q),
denotes a plane wave state.

Hy=pL/2m, + 4,/ 24, (3.3)

is the Hamiltonian of the free motion in momentum repre-
sentation, Gyfz) = (z — H,) ™' is the corresponding Green's
function and ¥, is the two-body potential in subsytem a
given by

PV 0. =8 —pKq |V Z]a), (3.4)

where ¥ is a Hermitian potential in the two-body space,
which we assume to be a rotational invariant.
The kernel we want to consider is

K =V, GyE + i0), (3.5)

for a positive energy E. K, applied to a state f, reads in mo-
mentum-angular momentum representation

(qim|V?|q1'm’)

a(P'L ;Ml,qllrmrv‘)a

e~+0Jo Por Do P2 E + i pIZ _ ql2
2m,  2u,
. * Vilg.9)
= lim | dg'q” ! floLM,q'Im), 3.6
2 B E e — i am, — g PR (3.6

where
Viig.q') = {qgim|V?|q'Im)

(3.7)

is independent of the quantum number m because of rotational invariance. In the following we omit the angular momentum
quantum numbers and put 2m_, = 2u, = 1, without loss of generality and assume 0 < E < 1. The singularity of the kernel can
occur only for 0<p, ¢'< 1. For sake of technical simplicity we modify K by restricting the variables to 0<p, ¢, and ¢'< 1, but the
same kind of result also holds without this restriction. Thus we finally consider the kernel

(! Vig.q)
Kf)p,g) = lim | d¢ ¢ J F(0.q). .
(KfNpq) Jim | 94 Eric—p —q .9 (3.8)

We want to show now that there is a Hilbert space ##°, such that under some smoothness conditions on ¥, K: 27—
becomes a linear, bounded operator, with the spectrum o{K ) having the form required in the assumption of Corollary 2. Let
elp) = E — p?, s(p) = |e( p)|"/* and define ¥ by

L= {1 o7 [ dag* pafenis]. 7 = [rirbaeL.svpa =L P et 39)
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A scalar product is introduced on 57

(/8 = (f8), + (@70 8L,
We claim that &#7,(.,.), is a Hilbert space.
The completeness remains to be shown. Let { £, } be a
Cauchy sequence in &, then { £, } is a Cauchy sequence in
L, and there is a limit element feL,,

Ia Tf'

Also ¢ " is a Cauchy sequence in L, and there is a limit
element gel,,

(3.10)

(3.11)

" —g. (3.12)

#is complete if ¢/ = g.
(i) First, we claim that {f, (p,s(p)) } is a Cauchy sequence

in
Lijp) = [ftfo o f1p)? exiss), 3.13)
because
L dp If, [psip)] — fin Lpssto)]
-4 f dp p? f dq | £, [psto)] — 1, [p:sto)]
I U P S ANy
-~ f dpp f dg 71670.a) — 6" pg)] (314
[e(p) - qz] +fn (p’q) nfm (p’q)|2
tends to zero with m,n— o as e(p) — ¢ is bounded, and be-

cause of Egs. (3.11) and (3.12).
exists a limit element FeL,(p),

fulos ) F o) (3.15)

(ii) The set {(p,g)|g = s(p)} is 2 subset of measure 0 of the
integration domain {(p,g)|0<p,g< 1}. We modify fon this set
of measure 0, putting

L,{p)is complete, hence there

flpsip)] = Fip), (3.16)
which does not change feL,.

{111) Now we can prove the relation

fp.g) —fpsip)] - glp.q)lg* —elp)] =0 (3.17)

almost everywhere, which follows from

jo dpsz dq ¢ 1 (p.g) — Flp.sio)] — gpa)ld” — elp)]

= J; dppzfo dag*|f (p.q) — f,(p.9) — {f [p.sip)]

— £, [ps0)1} + [87(p.9) — 2lp.g) 1 [4* — elp)] |2
(3.18)

which can be estimated by the triangle inequality. The first
term tends to zero because of Eq. (3.11), the second term
tends to zero because of Eqs (3.15) and (3.16), and the last
term tends to zero because of Eq. (3.12). Equation (3.18)
implies

f(p’q)z_f[p’s(p)] = ¢7(p.g) = glp.g)eL (3.19)
q° —elp)
718 J. Math. Phys., Vol. 23, No. 5, May 1982

almost everywhere, thus proving the completeness of 7.

Now we want to show that K, defined by Eq. (3.8), be-
comes a linear, bounded operator mapping & into 7, pro-
vided that V' {gq,q’) is a sufficiently smooth function. Let
V'(g,q') be a once continuously differentiable function in the
domain 0<gq,q'< 1, and let fe#”. Thus one can write the right
hand side of Eq. (3.8)

V(q q)

lim d’ 2
S J(pq

g7 V(qq)—V[qS(p)] )
dq ,
L o) — fp.q')

- od) o)
" V[q,stpnf ag gL LT

V g5V [psip)] lim j dg q°

elp) +ie—q
(3.20)
We abbreviate
6" pag) =TT al, 321
¥ pg.9)
_ Vig.g) = Vigsp)] — VIslphg'] + V[S(p),S(P)]_

(4> — elp)] (g — efp)]
(3.22)
From the smoothness property of ¥ (¢,¢') there follows
the existence of an upper bound M, such that for 0<p,q and
g'<l,

|Vig.g') <M, (3.23)
14" (p.g.q')1< (3.24)
[¥Y (p.g.q')| <M. (3.25)

Now the first term on the right-hand side of Eq. (3.20),

K, F)lpg) = qu' 06" p.aa VP,

can be estimated as

1Kz, = lep v _[:dq q Iqu’ 7°¢"p.9.q)f .9
<£dp »’ fnldqqz(foldq'q’zlcﬁ V(p,q,q’Hz)
X (Joldq’q’sz{p,q’Hz)

M2 1 i . MZ
<—f dpplf dg ¢\ o) =1L
9 Jo 0 9

(3.26)

(3.27)

Similarly one has

e *VI7, = fo dp sz dq qzlfo dq'q* ¢  p.g.9'f P4\

<M, (3.28)
and thus
1K, A% = 1K £, + 11652, <-—ufan ~nfna,.

(3.29)
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The second term on the right-hand side of Eq. (3.20)
reads

(K2 Floa) = = ¥ lasto)) | i 4700,
The following estimates hold
1Kz, = Joldpp2 Joldq q\v [q,S(p)]Joldq’ 98’ p.q)°
<M 2| gyll2,, (3.31)

llé *IIZ.,

- f dp 7 f dg ¢ — " [psiohal® f dg 48" 0.q)I*

(3.30)

<iM2|$71IZ,, (3.32)
and hence
| Ko f |5 < 3 M2|IfF1I5- (3.33)

The last term on the right-hand side of Eq. (3.20) reads

(K3 f)p:q) =V [g:5(p)1f [ps(p))clp), (3.34)

where
1
= lim | d¢ f——m—-— 3.35

c(p) Jim ) daq RN (3.35)
exists for all p in 0<p<1 and c(p) is bounded,

lelp) | <NV. (3.36)
K,f can be estimated as
K1,

- f dp " f dq |V [4:50) 1 [p.sp) <o)
<MN? j dp f dq 2If [psto)]

—MN f dp p° f dq 216" p.q)lelp) — ) +Fp.q)?

<SMON*2|l¢ M., + L P<IMANf15,  (3.37)
where |e¢(p) — ¢*|<2 has been used. Analogously we have

I8, = | dpp? | da 16” ps0)a1* [p.slp)elp)
<OMN I, (3.38)
hence
1K, £ 1 <18MN2f, 3.39)

From Egs. (3.29), (3.33), and (3.39) one concludes that range
(K')C 2 and K is bounded.

Finally we investigate the spectrum o{K ). We define for
a fixed p, O<p<«1,
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P Re(X)
// r(A)

A

FIG. 2. Schematic plot of the eigenvalues 4, (p) [Weinberg trajectories given
by Eq. (3.42) for an attractive potential].

0 Imn)

7, = 11 [ da iresis,
Sflg) —fslp)]

1 2
dg q* exists, (3.40)
L g’ —elp)
and K, is defined on 57,
- Vig.q)
K =1 dg'q*—2L —f(q'). 3.41
(Kaf)lg) elToJo 1 T e - q,2f (g) (341

It has been shown in Ref. 8 that 7, is a Hilbert space
and K, a compact mapping from %, into ##,. The spec-
trum of a compact operator consists only of the point spec-
trum and possibly the origin. Let A, be the eigenvalues and
@, be the eigenvectors of K ,,

K,p,.=4,0,. (3.42)

Of course A, and ¢, are dependent of p. Under variation of p
the eigenvalues run along the so-called Weinberg trajector-
ies® (Fig. 2). Thus the spectrum o{K ) is given by

oK)= {4, [e)]|v = 1,2,...; 0<p<1}u[0]. (3.43)

Thus the spectrum o(K ) has a shape, which allows a tongue-
shaped extension from the region |z| >#{K ) into the region
inside the spectral radius and fulfills for those values z, the
assumption of Corallary 2, and hence X is A-proper.
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Bargmann transform, Zak transform, and coherent states
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It is well known that completeness properties of sets of coherent states associated with lattices in
the phase plane can be proved by using the Bargmann representation or by using the kg
representation which was introduced by J. Zak. In this paper both methods are considered, in
particular, in connection with expansions of generalized functions in what are called Gabor
series. The setting consists of two spaces of generalized functions (tempered distributions and
elements of the class S *) which appear in a natural way in the context of the Bargmann
transform. Also, a thorough mathematical investigation of the Zak transform is given. This
paper contains many comments and complements on existing literature; in particular,
connections with the theory of interpolation of entire functions over the Gaussian integers are

given.

PACS numbers: 02.30.Mv, 02.30.Lt

1. INTRODUCTION
If xeR, yeR, then G (x,y) denotes the function
(reR);

G (x,p) is called a coherent state,"? or also a Gabor func-
tion.>* In the past ten years a number of papers"**~ ap-
peared about the completeness of the collection

{G (na,mf3)|n,m integers} where a >0, > 0. These papers
deal with the following question: if fis a (generalized) func-
tionand ( /;G (na,mf3 )) = Ofor all integers » and m, then does
it follow that £=0? Asearly as 1932, von Neumann® noticed
{apparently without publishing a proof) that the answer is
“yes” if feL *(R), a3 = 1. Two proofs of this fact were given
in 1970 by using the Bargmann transform,’ and in 1975 a
proof was given by using the kq representation. The most
complete answer to the above question was probably given in
1979. It is shown’ that { £,G (na,mf3 )} = O for all integers n
and m implies =0 for a very large class of generalized func-
tions fwhenever af8 < 1. Also, in case aff = 1, a character-
ization of all tempered distributions fwith (f,G (na,mf3))
= Oforall n and m is given. The main tools are a Phragmén—
Lindelof theorem and the Bargmann transform, although
the latter is not explicitly mentioned.

A related question concerns expansion of (generalized)
functions f'in series of the form 2, . c,,,, G (na,mB ) with
af3 = 1 (Gabor series). In 1946 Gabor'? suggested a simulta-
neous time-frequency analysis of signals based on these ex-
pansions. In 1979 existence and uniqueness theorems about
Gabor series were given (cf. Ref. 6, where expressions for the
coefficients c,,, are given, and Ref. 4, where existence of
Gabor’s expansions for tempered distributions is proved; in
both papers the kg representation, although not explicitly
mentioned, plays an important role).

We give a survey of the content of this paper. In Sec. 2
we consider the spaces S of smooth functions and S of gen-
eralized functions, and we show that, in connection with the
Bargmann transform, these spaces arise in a natural way. In
Sec. 3 the Zak transform 7, which maps functions fof one
real variable onto functions 7 fdefined on the unit square, is
introduced and studied in detail. A peculiar property of the
Zak transform'! is the following one: if fel *(R) and T f'is

(G (xp)t) = 2exp( — 7{t — x)* + 2miyt — mwixy)
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continuous, then T fhas a zero in the unit square. In Sec. 4 a
number of consequences of this property are given. One of
the consequences is that one can improve the convergence of
Gabor series (which, in general, converge not even in L *
sense for elements of §') by shifting the lattice over a distance
(a,b ) with suitably chosen numbers @ and b. Also, the results
about completeness after deleting one or more coherent
states>>” are completed and generalized, and a relation with
classical results in interpolation theory is indicated. Al-
though almost all results deal with square lattices of unit
area with axes parallel to the x and y axis in the phase plane,
some indications are given how to handle general lattices.
Finally, the paper shows existence of Gabor’s expansion for
elements of S”.

2. THE SPACES S AND S " AND THE BARGMANN
TRANSFORM

In 1961 Bargmann'2 constructed a unitary mapping of
L *(R) onto the set F of all entire functions fof growth <(2,}
for which f| f(z)|% ~ ¥ dz < . On the space F Fock’s so-
lution & = 3 /87 of the commutation rule [£,7] = 1 is real-
ized. In 1967 Bargmann'® described several spaces of test
functions and generalized functions in terms of certain sub-
sets of F and duals of these. In particular the spaces S and S’
(Schwartz’s space of functions of rapid decrease and of tem-
pered distributions respectively) were considered. In this
section we shall investigate the relation between Bargmann
transform and the spaces S and S * (of smooth and general-
ized functions respectively) which were introduced in Ref.
14 and studied extensively in Refs. 3, 15, and 16.

2.1. The space S consists of all entire functions ffor
which there are M >0, 4 > 0, B> O such that

(%)| f{x + iy)| <Mexp| - mAx* + 7By*) (xeR, yeR).

S
A sequence ( f,), in S converges to zero in S sense ( f, —0) if

there are M > 0, A > 0, B > Osuch that (*) holds for all f, and
such that £, —0 pointwise. The space S * consists of all con-
tinuous antilinear functionals defined on S. The action of
FeS " on feSis denoted by (F, f). A sequence (F,), in.S”
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converges to zeroin S " sense (F, S—»O) if (F,, f)—0forall f€S.
Note that G (x,p) €S for all xeR, yeR.

2.2. For n =0,1,--,3, denotes the nth Hermite func-
tion. We choose our normalizations such that!’

exp(mx® — 2m{x — w)?) = i c,w'yP,(x) (xeC, weC),
n="0

where ¢, = 2~ 447)"*/(n!)'”* for all n. We have ¢, €S.

There is a one-to-one correspondence between the
space .S and the space D of all complex sequences (@, ), with
a, = Ofe ~ ") for some € > 0; if fES, then (( ,%,)),€D, and if
(@,).€D, then 2 a,¢, converges in S sense to an element of
S. There is a similar correspondence between the space S°
and the space D * of all complex sequences (b,,), with
b, = 0(e"™) for all € > 0. It follows'® that SCS and that
s'cs’.

2.3. A different way to describe the space .S is the follow-
ing one: In Ref. 14 the space S §(a > 0, B> 0} is defined as the
set of all functions f: R—C for which thereexist C> 0,4 >0,
B> 0such that

(**)|x* f19(x)| <CA “B 7k *2g*,
for all xeR, k = 0,1,--,g = 0,1,--.. Our space S can be identi-
fied with S )3 as follows: If f&S, then the restriction of fto R
satisfies inequalities as in (**), and if we have an f: R—C
satisfying inequalities as in (**), then fcan be extended to an
entire function satisfying an inequality as in 2.1{*). Also, the
notions of convergence in 2.1 for S and in Ref. 14 for S}/
can be shown to be equivalent.

We note some topological properties of the spaces S and
S . If we consider S and S with the weak * topologies, i.e.,
with the linear topologies generated by all sets of the form

{ fES|(F, f)e0} (where FeS*,0C C open) and { FeS |

(F, f)€0} (where f&S,0C Copen), then the dual of Sis.S “and
the dual of S " is S. The space S (S *) is complete in the sense
thatif f,eS(F,eS")and lim, . (F, f,) [lim, ._(F,,f)] ex-
ists for all FeS *( f€S), then there is an f&S (FeS 7) such that
(Ff)=1lim,_ _ (F,f,)[(F,f)=Ilim,_ (F,, f)] for all FeS"*
(f€S). More information can be found in Ref. 15.

To indicate how big the space S " is, we observe that any
measurable F:-R—C for which = _ exp( — et ?)|F(t)| dt

< oo for all €> 0 can be regarded as an element of S * by
putting (F, f): = §= _F(t) f(t) dt for feS.

2.4. We give a list of operators of S: if f€S,a<C, beC,

a >0, then

(T, fNe) = flt+a), (R, f)e)=e 27 fio),
(Naf)(r)=( 1 )

sinha

X f jwexp( — 7 ({2 + 2¥cosha — 2tz)) f(z) dz,

sinha
0= [T e s dn T 0 =7 - 0),
(PAIe) = (1727 10), QL)) = 110),

for teC."” These operators are continuous and have adjoints
that map S'into S; they can therefore be extended to continu-
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ous linear operators of § *.2¢
2.5. Definition: For FeS ™ the Bargmann transform BF
of Fis defined by

(BF )(z) = ¢ (T, Fg) (2€C).

Here g(t) = 2" *exp( — 7t ?) for reC.
2.6. The following formula (for FeS ’) is due to Barg-
mann'Z; for the sake of completeness we give a proof.
Theorem: Let FeS°. Then
(BF)2)= ¥ ) i ey
=0 (n!)l /2 :
Proof: Put k() = 2" %exp(inz® — w{t — z)?) for zeC,
teC. Since (BF )(z) = (f,45) and

h,(t)=2"%exp(mt? — 2t — f2)’) = i fi—';)(%(#”zz)",

n=0
with convergence in S sense for every zeC, we have
- _ o B,
(BF)(z) = (Fhs) = ,.;o i (m'7z)"

2.7. Let & be the space of all entire functions of growth
<(2,7/2), and let  be the measure on C defined by
du(z) = e ™' dz. f & = €nL }(C,u), then 5 is a Hilbert
space for which (74"z"/v/n!), is a complete orthonormal sys-
tem, and B maps L *(R) isometrically onto &#.'* Also, "

B(S) = { €% | flz)exp( — im|z|*)
=O((1+|z|)~ ") forall N>0},
B(S) = [ €| flz)exp( — im|z|’)
=O((1 + |z|)¥) for some N> 0}.
Theorem: (i) B (S) = { f€& | growth of f<(2,7/2}, (ii)
B(SH)=¢%.
Proof: Let FeS. There is an € >0 such that
(F.¢,) = O (e ™). Hence, by Stirling’s formula
[(F’wn )/(n!)l/z]ﬂ.n/z =0 (n - 1/4(17/71)"/26 — nfe + ‘2))_
It follows from Ref. 21, Theorem 2.2.2 that B f has growth
<{2,m/2). Conversely, let /€&, growth of f<(2,7/2). Writ-
ing f(z) = £, a,2z" we know from Ref. 21, 2.2.10 that lim sup
nla,|*" <me. Hence b,.: = a,7"*(n!)"/? = O (e ~ ") for some
€>0.Soif weput F=23 b,¢,, then FeS'and BF = f.
The proof of (ii) is similar.
Remarks: (1) There are similar characterizations for the
elements of B(¢) and B (.#) (¢ is the convolution class and

{#} is the multiplication class; cf. Ref. 16}. It may be shown
that

B(¢)={fe€|Y,,, 3, [ flx+iy)

= O (exp(mgx” + mpy’))]},

B(M) = {feg}|vp>i3q<{ [f(x + ly)

= O (exp(mgy* + mpx))]}.

(2) Theorem 2.7 shows that Theorem 2.8 in Ref. 7 is in
some sense the best possible result that can be obtained by
using the Bargmann transform.

2.8. In the list below we have FeS~°, aeC, beC, a >0,

zeC. i
(1)(BT, Fz) = e~ ™ ~ ™4BF)(z + a),

(2) (BR,F)z) = e~ ™"~ "(BF )z — ib),
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(3) (BN, F)(z) = e " *“(BF )(e ~“z),

(4) (B F)(z) = (BF (iz),

(S)(BPF )(z) = Yiz(BF )(z) + (1/2mi{BF ) (z),

(6) (BQF )(z) = L2(BF )(z) + (1/2m)(BF ) (z),

(7)(B(Q — iP)F)z) = z(BF )(z),

(8) (B(Q + iP)F)z) = (1/m)(BF ) (z),

(9)(B(Q* + P*)F)(z) = (1/2m)(BF ){z) + (z/m)(BF )'(2).
The proofs of these formulas are straightforward; compare
also Ref. 12 where BU is calculated with U a canonical oper-

ator associated with a symplectic transformation of the
phase plane, and Ref. 3, Sec. 27.3.

The obvious advantage of the space S” over . is that
we can consider in (1) and (2) complex values of @ and b. The
obvious disadvantage is the fact that S " is described in terms
of entire functions so that its elements are hard to localize.
Nevertheless, it appears that one can say at least something®’
about the carriers of the elements of S with the aid of the
Bargmann transform and the theory of analytic functionals.

Some other useful formulas are

(BG (x.y))(z) = exp( — jm(x* + y*) + 7lx + iy)z) (2€C),

(B&KNz) = (— 1) (kY)'22m) 4 (2/v2)  (2€C)
for k = 0,1,.... For FeS ", feS, acR, beR,

(F,.G(a,b)) = exp( — Lm(a* + b?)(BF)a — ib),

F.)= | e " (BF)e) BN da

so that (integration over R?)

(F.f) = H(F,G (@b )G lab), f)dadb,

which agrees with the formula 27.12.1.5 in Ref. 3.

3. THE ZAK TRANSFORM

In this section we study the Zak transform which was
introduced in 1967 by Zak to construct a quantum mechani-
cal representation (kg representation) for the description of
the motion of a Bloch electron in the presence of a magnetic
or electric field.?*>~*° This representation can also be used for
the quantum mechanical description of angle and phase.?¢
The Zak transform 7 maps functions fdefined on R onto
functions T f of two variables as follows:

(T f)z,w) = 72 flz — n)e 27,

Zak denotes the first variable (quasiposition variable) by ¢
and the second variable (quasimomentum variable) by k. We
consider here T as a mapping of L ¥R) into L ([0,1]?), and
also as a mapping of S * into § % [and of S’ into (S?)']. Al-
though the Zak transform looks, at first sight, less interest-
ing from the mathematical point of view than does the Barg-
mann transform, it pays (as we shall see in the next section) to
investigate its properties systematically. A striking property
is that 7 fhas a zero in [0,1]%, provided that T fis continu-

ous. We further give a formula for the product TF- Tf (in
case this makes sense) which is very convenient when prov-
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ing completeness properties, and we determine 7'(S),7°(S ),
T(S), and T(S').
3.1. Definition: Let FeS*. We define

TF.= ¥ TV ,RFeH)

where H =1 [for the definition of the tensor product, cf. Ref.
15, Appendix 1, 1.17; we have (F, @ F,, f,® f3)

= (F), fllFs f5) for F.€S ", f,€S (i = 1,2)]. This definition
makes sense, for if FeS°, f,€S, f,€S, then

S (TY,ROFeH), fi®f,)

= Y (T_.FfiNT filln)
converges absolutely by Ref. 16, Theorem 5.5. By Ref. 15,
Appendix 1, Theorem 3.7, the series £, 7" R '}(Feo H)
converges unconditionally in § 2" sense. It also follows from
Ref. 15, Appendix 1, 4.14 that T is a continuous linear map-
ping from S " into 2, and we have F = 0 if TF = 0. Similar
things hold if we consider 7 as a mapping from S’ into (S%)'.
In the case feS, T fcan be identified with the function

S e iz —n) [zw)eR?).

3.2. Part of the following theorem is taken from Ref. 4;
for the sake of completeness we include a proof. We also note
that part (i) occurs in a more abstract version in the proof of
Ref.27, Chap. 1, Sec. 5, Lemma 4.

Theorem: (i) T’maps L %(R)isometrically onto L *([0,1]).
(ii) Let 1<p < 2. Then T maps L #(R) into L #([0,1]?), and the
operator norm < 1; T is injective but not surjective.

Proof: (i) Let feL *(R). Since the functions
£z — nje = 2™ are orthogonal over [0,1]* we see that

J:J:|(Tf)(z,w)|2 dzdw

1 At
= 3 J | flz — n)e = ™2 dz dw
n= — wv0 JO

| 1rapae

— o

Hence Tis well defined as a mapping of L *(R)into L *([0,1]?),
and it is norm-prec=-ving.
Now let geL ([0,1]°), and let

1 .
Com’® = J f g(z’w)eZm'mz + 2minw dZ dw
0 Jo

for integers n and m. Putting f(z — n): =2, c,,.e > for
0<z < 1 and integer n, we easily see that feL *(R), and that
Tf=g.

(ii) Let feL '(R). Then

Llj: (T f)z.w)| dz dw

<Hz fle—nldzdu= | |70z

Hence T feL '([0,11%) and || T f||,<|| f1|,. It follows from con-
vexity theory that 7 maps L ”(R) into L #([0,1]%), and that
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N TAY,<||f]l, for fEL?(R), 1<p<2.

Toshow injectivity, let feL ”(R), f #0. Let f, €L (R)be
such that | £, |<| f, . .| and f,—f, Tf,—Tf ae. By Fa-
tow’s lemma and part (i),

J:.[)l (T f)zw)|* dz dw

1 A1
>lim Squ f (T £, z:w)|? dz dw = lim sup|| /, ||7 > 0.
nw - Jo Jo oo
It is trivial that T is not surjective if 1<p < 2; otherwise
we would have T'(L ?(R)) D T (L %(R)), whence L *(R} DL YR).
Remarks: (1) There is no way to define T as a mapping of
L*(R) into any L "([0,1]%) if p> 2 (cf. Ref. 28, Chap. XII, 2,
p. 102). (2) As a mapping of L ?(R) into L #([0,1]?) with
1<p <2, Tis not bounded below. To see this, put f;
:=3,CoXinn+11f0TC=(c,),€l” If T were bounded below
there would be an m > 0 such that
IT L[5 m]| £ll, = mS., e, ) for cel?. As
(T f.)zw) = Z,c,e > for cel?, this implies that
[3,c,e 2™¥|cel?} = L?([0,1]). Contradiction.
3.3, In the list below we have FeS ~, aeC, beC, a >0,

(1) T(T,F}=TJ(TF),

(2) T(R,F)=R{'TJ(TF),
(3) TYTF) = RY(TF),
(4) T™TF)=TF,

(5) T(NF)

= N(a”( i e F"ZCOShasmha(Rinsinha T7 ncoshaF) ®H)v
(6) TFF = e~ "= UTF,

(7) T(PF) = PTF,

(8) T(QF)=(Q"" + P®TF.

Here U is (the extension of) the mapping that takes f(z,w)eS?
into f(w, — z). All formulas except {6) follow directly from a
computation. To prove (6) we first take an f&S. We have by
definition

(TF flizw) = i (F fliz — nje ~ 27,
Observing that (7 f)(z — nje = 2™

=¢ ™ ¥R_T, f)( — n), we get by the Poisson summa-
tion formula

(TF flew) =™ 3 & f(w —n)

= e~ (T f)w, — 2).

For the general case take a sequence ( f, ), in Sthat converges
in S sense to F, and use continuity of T'(cf. 3.1).

Remarks: (1) Formula (6) and Theorem 3.2 (i) give a
quick proof of Plancherel’s theorem since U maps L %([0,1]?)
unitarily onto L *([0,1] X [ — 1,0]). It is of course the Poisson
summation formula that does the trick here. (2) If T fis suffi-
ciently well behaved we can recover fand . fby integra-
tion. We have
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fle) = f (Tflzw)dw, (7 £ — w)

- f (T fzaw)e>™ dz,

for zeR, weR.
3.4, We calculate 7G (x,y) and Ty, for xeR, yeR,
n = 0,1,---. We have by the formulas of 3.3

(TG (xp))(zw) = (Tle” ™R T _.g))zw)
—¢ mixy + Zm'yZ(Tg)(z — X,w __y)’

so that we need Tg. In general, we have by the generating
function of the Hermite functions (cf. 2.2),

k(T )(z,w)
— C[k [ev22 — 27z — ”226’ — 't + 2min(w + iz — Zir)]

=C, [.93(10 +iz—2it) S et ’z//,(x)]‘

Here 8,(z) = =, exp{ — mn° + 2minz} is the 3rd theta func-
tion [in the notation of Ref. 29 we have 8,(z) = & (7z,e = ")].
By the Taylor expansion of 8, around the point w + iz we get

Kot l2) (k
(Tl//k)(z’w):[;() Wil (1

In particular,

1/2
) (— 7" w + iz).

(TG (xy))z,w) = (G (xp))2)0s(w + iz — y — ix),
and in case n and m are integers we get by 3.3,
(TG (n,m))(z,w) — ( _ l)nmeZﬂ'imz + 2miniw g — ﬂljez(w + I'Z).

As another example, lete, (¢): = e ~>™“ where acR. We
have

Tle)= S e, 86,

Hence, if a is an integer, T'(e,) = ¢, ® 2,5, and if f&S " is
periodic with period one, then T f= f® 2,5, . Similarily, if
[is a function of the form f=3,¢,5,, then T f=¢ ~*"*
(2’1 5n) ® ‘7.[

3.5. It is easy to see that T fhas a zero in [0,1]%if T fis
continuous and fis real-valued, or even, or odd, or a Gabor
function. The following theorem shows this is general.

Theorem: Let feL %R) be such that T fis continuous.
Then T fhas a zero in [0,1]%.

Proof*: Assuming (T f)(z,w)# 0 for (z,w)e[0,1]* we can
write

(Tf)zw) = e,
where g:R*—C is continuous. Indeed, this follows at once
from Ref. 31, Part VI, Sec. 1, Lemma 7.

We have by 3.3

(Tf)z + Lw) = ™ (T f)zw),
(Th)zw + 1) = (T f)zw),
for (z,w)e[0,1]°. Hence, for some integers k and /
plz+ Lw =9zw +w+k,
plzw+1l)=g@lzw) +
for (z,w)e[0,1]°. Calculating ¢(1,1) in two different ways, we
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get@{0,0) +k+1=9@(L,1)=@(0,0) + k + 1+ 1.
Contradiction.

Remark: If =y, then {(T f)(z,w)| = 1 for all
(z,w)eR?.

3.6. In the remainder of this section we determine
T(S),T1S"), T(S), and T (S'). We first give a formula which
will also be used in Sec. 4 to answer questions about com-
pleteness (also cf. Ref. 6).

Theorem: Let (1) FeS~, geS or (2) FeS', g8 or (3)
FeL *(R), geL *(R). Then

E(F’R o T7 ng)e21rin’w+ 2mimz __ TF. T_g,

where the identity is to be interpreted in S * for case (1) and
in (S?)" sense for case (2). For case (3) the identity must be
interpreted in the sense that the (mn)th Fourier coefficient of

TF Tgequals (F, R _, T _,g).
Proof: First take FeS, geS. Noting that

(FR_,T_,g™ = (FT,F T_,g))m)

for all n and m we get by the Poisson summation formula
{applied to the summation over m)

Z(FrR o T_ ng)eZm’nw + 2mimz

=YF(m+z) g(—n+m+z)e™

Now the formula easily follows by first summing over » and

then over m.
For the general case (i.e., FeS *) take a sequence (F, ), in

S which converges to Fin S~ sense. It follows as in the proof
of Ref. 16, Lemma 5.2 that for every € > O there are positive
numbers M and 3 such that

l(FA ’R —m T - ng)|<M HN/JFI\ ”2exp(7€(n2 + m2))’

for all n,m, and k (note that N, F, €S for 8> 0). Since
|NgF, ||, is bounded in k for every 8> 0 it is not hard to
complete the proof of the theorem for case (1).

The proof for case (2) is similar to that for case (1). For
the proof of case (3) we take F}, and g, in S with
F,—F, g,—g in L*R) sense. Now we note that

TF,. Tg,—TF. Tg in L '([0,1]%) and use the result already
proved with F, and g, in the role of FeS, geS. Hence, the

(mn)th Fourier coefficient of TF- Tg is given by
(FR_,,T_,g)

3.7. Theorem: T (S') equals the set of all entire functions
@ of two variables such that p(z + 1,w) = e ~ @ (z,w),
@ (z,w + 1) = @ (z,w) for all (z,w)eC?, and such that there are
M>0,4>0, B>0with

l@ (x + iy,u + iv)| <Mexp(2mxv + wAy* + wBv?).

Furthermore, T'{S) equals the set of all peC =(R?) such that
@lz+ Lw)=e pzw), @zw+ 1)=¢@zw)for all
(z,w)eC2. Finally,
T(S")= {FeS¥|T\"F=R¥F,T¥F=F}, and
T(S)={Fe(SY|TVF=RPF, T¥F=F).

Proof: Let f&S. It is clear that Tfis an entire function of
two variables. Take K >0, C> 0, and D > O such that

| flx + iy)| <Kexp( — 7Cx* + 7Dy?) (x€R, yeR).
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Then for real X, U0,

|2, fix + iy — nJe 2t o)
<K =, exp( — 7C (x — n)* + 7Dy* + 2mnw)
= Kexp(2mxv + mv*/C + mDy))Z,
Xexp( — 7C(x + v/C — n)?),

whence T'(S) is contained in the set mentioned in the theo-
rem. Conversely, let @ be an entire function of two variables
such that @ (z + Lw) = e~ "¢ z,w)p (z,w + 1) = @ (z,w)
for all (z,w)eC?, and assume that M >0, 4 >0, B> 0 are such
that

|@ (x 4+ iy, u + iv)| <Mexp(2mxv + wAy* + wBv?).

Put #(z) = [ (z,w) dw for zeC. Then ¥ is an entire function
for which |#(x + iy)| <M exp(mA4y?). Also,

1 1
J- @ (x,w) dw =f @ (x — [x],wle % du.
(¢] 0

Let t€[0,1], neZ. We have by analyticity and periodicity of ¢
in its second variable and by the estimates on ¢

1
J (p (t,LU)e — 2minw dw
0

1+ iy )
f ¢9(t,LU)€ — 2minw dw '
0

+ iy
<M exp(2mty + wBy* + 2mwny)
for all real . Minimizing with respect to y gives

1
j ¢ (t’w)eZWinw dw
0

Hence y(x) = O (exp( — 7B ~'x?)) (xeR). It follows easily
from the Phragmén-Lindelof theorem that @eS. It is trivial
that Ty = ¢.
The proof for the S case is similar and will be omitted.
To prove the assertion about 715 ) let FeS'? satisfy

T\"F=R'YF, T''F = F. For any ¢S, T isamultiplica-
tor of 2 and it is easy to see that F. T3 is an element of S %

<M exp( — 7B ~'(t + n)?).

which is periodic in its both variables. Hence F- Ty hasa
Fourier series 3, . ¢, . (#)e*™™ * ™ (cf. Ref. 3, 27.24.3).

nm>nm

Define G by (G,1%): = cy{}). Then GeS *, and by Theorem
3.6, the (nm)th Fourier coefficient of 7G. Ty equals

(GR_,T_,¥)=c,,(¥). Hence (F— TG ) Ty = 0 for all
yeS. To show that this implies F;: = F — TG = 0, let €S,
¥+#0. We see from the formula

TR_,T_,¥) =™ (TY)z —aw —b)

that

Fi (TY)Z—a,w—b) exp{—mz—a) —mw—b))=0
for all a and b. Putting f(z,w) = exp( — 72" — Tw?)

( TY)z,D), we have feS2, F-TWTQ f=0for all acR, beR.
So, if #eS 2, then (cf. Ref. 16, Sec. 5) 3
0= (F.-TPTPfh)= (R ,R?,F f,FhF,))

o« o0
— J- f elm‘az + 2mibw
— 0 — oc

X(F flew) (F (h-F\))zw) dz dw
for all real @ and b. As f 50, this implies that .% (h-F,) = 0.
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We conclude that F, = 0.
3.8. Example: Let (a,b JeR* k = 0,1,+,] = 0,1,-.. It will
be of some interest to know which FeS' satisfies
TF=%,,T'RATQ (6% & 6Y).
[note that the right-hand side is indeed in T'(S')]. For conve-
nience take (a,b )€(0,1)?, and let S have supportin (n,n + 1)
wherenisaninteger. Then (7@ )(z,w) = @ (z — n)e ~ 2™ and

TF. Ty is the periodic distribution of two variables for

which the restriction to [0,1]? equals 7T_,@ -6%'@R _ 5!
The 00th Fourier coefficient of this function is given by

(8%, T _ @ ) — 2min)e
= (8% @ N — 2min)'e ~2min®,
This suggests that F = =*_ _ _ ( — 2mrin)'e ~2™%6*)  and

indeed, it can be verified directly that this is the F we are
looking for.

4. BARGMANN TRANSFORM, ZAK TRANSFORM, AND
COMPLETENESS

— 2minb

This section contains material that completes and eluci-
dates the results of Refs. 1-7 about completeness of coherent
states and expansions of the Gabor type. The Zak transform
gives rise to more general results than the Bargmann trans-
form does in the sense that with the former completeness
properties for other functions than Gauss functions can be
proved. On the other hand, the Zak transform is only useful
when lattices of which the cells have unit area are
considered.

We start this section by drawing some conclusions from
Theorems 3.5 and 3.6. In particular, L 2 convergence of cer-
tain expansions of the Gabor type for well-behaved functions
is proved. We consider, of course, the case in which Gabor
functions are taken as basic functions in detail. The results of
Refs. 2 and 7 about completeness if one or more coherent
states are deleted are improved. Also, a connection with a
result of J. M. Whittaker about interpolation over the lattice
points in the complex plane is made. We finally indicate how
the results can be extended to the cases with general lattices
with cell area equal to one in the phase plane, and we show
existence of expansions of the Gabor type for elements of S .

4.1. Theorem 3.6 is useful for analyzing the mapping
S—(fR_.,.T_,8)),m» where g is some fixed function. If,
e.g., Tg is continuous and 1<p<2, then
(iR _ T _ ,8))am€l? for feL P(R) (g conjugate exponent),
but the mapping is not bounded below (as a mapping from
L ”(R) into /%) by Theorem 3.5.

This has an interesting signal-theoretic consequence.
The function S, f given by (S, f)xp): = (iR _,T_,g)is
sometimes called a spectrogram of f. Hence, if we sample
S, f over a lattice of which the cells have area one, then it
may happen that the double sequence of sample values have
small ¢ norm while both fand T fhave large p norm.

In case f= g we have

(AR _,T_, f)=e” "™ Ambixy;f),

where Amb(-,-; f) is the so-called ambiguity function®? of f,
defined by
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Ambley; )= [ e et 1) Fi— 40 e

We derive from Theorems 3.5 and 3.6 the following
inequality: if feL %(R), T f continuous, then
Amb(0,0; f)<Z, oy 0,0) |Amb(n,m; f)|, which is an inequal-
ity expressing the uncertainty principle.3>3?

Note, however, that the assumption T fcontinuous” is
essential, for if f=y,,,, then Amb(0,0; /) = 1,
Amb(n,m; f) = 0 [(n,m)#(0,0)].

Takingg = f_, where f_(t)= f(—t), we get

(SR_,T_ [ )=4e ™ W(Exiy /[
where W (.,; f) is the Wigner distribution of f defined by

W(xy;f):f_w e“”””ff(x+5t) Slx—1t)dr.

Hence the Fourier coefficients of Tf. Tf _ equal

W= 1""Wlnim; f). As (T f_)zw) = (Tf) — z, — w), we
see that it may well happen that W(in,im; f) = O for all inte-
gers n and m. This is seen from the Fig. This can happen even
if feS, but not if f&S (cf. Theorem 3.7).

4.2. If we take a geL *(R) for which the set of zeros of Tg
has measure zero, we get the completeness results obtained
in Ref. 5: the set (R _,, T _ ,8),.. is complete in L %R). If, in
addition, TgeL %([0,1]%), where ¢>2, then (R _ . T _ g}, is
complete in L ”(R), where p = ¢/(¢q — 1). This can be proved
by using Theorem 3.2 and generalizing Theorem 3.6 proper-
ly. And if Tg is, e.g., continuously differentiable [which im-

plies by Theorem 3.5 that 1/ Tgé L %([0,1]?), then

(R _ T _ 8)in,m) (0,0 isstill completein L *(R) [and probably
also in L #(R) for 1<p<2]. Finally, if feL %(R), geL *R) and
the set of zeros of Tg has positive measure, then either
(fR_,T_,g)=0forallnandmor(f,R_,T_,g)#0for
infinitely many » and m.

Remark: Let geS. We can use Theorem 3.6 for describ-
ing thesetof all f&S'suchthat(f,R _,,T_,g) = Oincase Tg
has a finite number of zeros (a,,b,),...,(a, ,b; ) in the unit
square. By Theorem 3.6 T fis concentrated in
(@150,),.--+(ax,by ), and the translates of these points over dis-
tances (n,m) with integer n and m. Using Ref. 34, Chap. 24,
Theorem 2.4.6 (the restriction to the unit square of) we see
that 7 fhas the form

k P

S5 S, 08,

i=1i=0j=0

(]l])

\ ,..nllll"""llllnh.

(1,-1)

FIG. 1. If the support of 7 fis in the [| ||| region, then the support of Tf_is
inthe = region.
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Now Example 3.8 can be applied, and we see in particular
that fis concentrated in the set {a, + nli = 1,....,k;n
integer}.

4.3. In Ref. 4 it was shown that for any FeS' there exists
a (not unique) expansion in a Gabor series, with convergence
in 8’ sense. If FeS, say, then it may still be the case that the
convergence of the series is not in L ? sense. The next applica-
tion of Theorems 3.5 and 3.6 deals with improving conver-
gence of series of the Gabor type. Take feL %(R),geL *(R)and
assume that TgeL =([0,1]%). Let (a,b J€[0,1]*. We have for in-
tegers n and m

T(R . 7bT7n7ag) —_ eZﬂ-ibz(Tg)(z —aw— b )e21rimz+2m‘nw.

Hence, if (¢, ), m€! % then f=2, ¢,,R _,._,T_,_.8
(in L }(R) sense) if and only if

(Tf)(Z,IU) — ez-m‘bz(Tg)(z —aw — b )zcnm eZm‘mz+ 2mrinw

[in L *([0,1]%) sense]. Now, if T fand Tg are continuous, then
it is in general advisable to take a and b such that

(T f)(z,w) = O whenever (Tg){z — a,w — b ) = 0. By Theorem
3.5 this is always possible if 7g has only one zeroin [0,1]°. Ifa
and b are such that Tf/TIR _,T_g)eL *([0,1]*), then one
can take for ¢,,, the (m,n)th Fourier coefficient of
Tf/T\R_,T_,g). Weseein particular (cf. 3.4) that a con-
siderable class of functions fhave an expansion
f=2,,.¢,mG(n+am+ b)inan L *R)convergent Gabor
series for suitable values of @ and b (this class contains all
functions ffor which T fis Hélder continuous).

Note: We can use the Zak transform to prove existence
of Gabor type expansions for tempered distributions in gen-
eral. Let geS, g #0be such that Tg is real analytic and has no
zeros on the edges of the unit squares (the latter assumption
is probably superfluous, but convenient). According to Koja-
siewicz’s theorem*” there exists a distribution @ of two varia-
bles such that @-Tg = T f. This @ is, in general, not periodic,
but by our assumption on g we may assume it is. Hence ¢ has
a Fourier series expansion £, ,,¢,.,,e™ * ™ and it fol-
lows that f=2,, ¢,.R _,T_,g This generalizes Ref. 4,
Theorem 4.7 where the Gabor case was considered [howev-
er, in the proof of the theorem quoted a method is given to
determine the double sequence (c,,,,, },.m |-

4.4, We now turn to the Gabor case in detail. We know
from Ref. 7, 2.14 that any regular tempered distribution f
with ( /,G (n,m)) = Ofor all integers n and m, (n,m)#(0,0)isa
multiple of the function f; given by

folt)=2""*exp(mt?) 3 (—1)" exp{ —7ln — 1)

n—\i=¢
This function which can also be found in Ref. 6, is an inter-

esting one as we shall see. We let g(t) = 2'/* exp( — 7).
Theorem: For every p, 1<p < oo we have

Foel “(R)\L ?(R). The Bargmann transforms (B f;)iz) of f,
equals — 8,(z)e!™ /2mz, where 0, is the first theta function
[in the notation of Ref. 29 we have 8,(z) = ¢(7rz,e ~ ")]. We

further have . f, = f,, and T f, =d / Tg where
d= — {0, 7).

Proof: It was already observed in the proof of Ref. 7,
Theorem 2.14 that f; is bounded. Now let 1<p < . We
have for >0
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| fole)] =27 exp(mt * — 7 *(t)) + Ofexp( — 2t ),
where @ (1) = [t + 1] — 1. If n = 1,2,-.-, then

n+
f expl(mpt > — mpe *(t)) dt

n 44
= f exp(mpt > — mp(n + 1)) dt

1

>exp( —pm)[(n + 1) — ((n + 4 — 1)'*]
>expl — pm)/(2n + 1).
It follows that f,g L ?(R).

To show that (B f)z) = — 6,(2)e!™ /2mz, we observe

that

Plgfy=— S (—1ye-" Vs

n= — x

/2

Taking Fourier transforms and using that ¥ P = Q. , we
36

get
i ( . l)ne — min - _\,f - 2miln - ':)2.

#o= e 20

— 2miz( 7 (8- fo)lz) =

The right-hand side is equal to i#,(mz,e ~ 7). Also
(F (g folz) = (R, fn &) = "(T_ . fn &)-
Now using Jacobi’s identity &, (7z,e ™ 7)
= j exp( — wz*)¥,(miz,e ~ ™) (Ref. 29, 21.51) we get
T L fog) = T (mize )
It follows from the oddness of ¢, that
(T, fo8) = ")/ 2mz.

Now use the definition of B. .
Wenextshow that T f, = d / Tg. Asitstands, this rela-
tion must be considered in distributional sense since
SofLP(R) for 1<p<2. We have ( £,,G (n,m)) = O for all inte-
gers n and m with (n,m)#(0,0), and according to what we
have found above,
— 2mz(R, fo8) = Hmz,e ™ 7),
so that (cf. Ref. 29, 21.41)
(forl) = _—1——[19 (wz,e~
27 dz
= — 120"
= — 1,(0,e ") }5(0e ~

Applying Theorem 3.6 we get
Tfy Tg= —49i(0e"")=

Since T £,€(S?)" and Tg has a zero in (%,%) and nowhere else in
[0,17?, there is a @€(S') concentrated in the pomts (n+ 1,

— 2mize ™

— &(mz,e”

.o

340,677 #0.

m + })withintegersnand msuchthatT fo=d/ Tg + ¢ [by
Theorem 3.7 we see thatd / Tg]eT(S ). It follows from

the remark in Sec. 4.2 that ¢ = T f}, where f| is concentrat-
edi in dl the pomts n 44, withzn an integer. However,

d/ Tgl = Tk , where k is the regular distribution given by
1
k() = J‘ ddw
0

(Tg1)z,w)
Here we use that if #:R*>—C is absolutely integrable over
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[0,1]° and satisfies Ty = R P, T = 4, then ¢ = T¥,,
where ¥,(z) = f§¥(z,w) dw (this follows from Theorem 3.6).
Now the fact that f, and k are regular and f, is concentrated
in the points n + | with integer # leads to a contradiction,

unless @==0. This shows that T f, =d / Tg.

We finally show that % f, = f,. We therefore observe
that Tf,=d/ Tg =d/ TS g = de*™ ™/ Tg)w, — z ) by
3.3,(6). Hence (TF f,)z,w) = e ~ ™™ (T f,)(z,w)
=d /( Tg)z,w) = (T f)(z,w), and the result follows from 3.1

Remarks: (1) It is easy to see that 3, fi(z — n)e = ™"

converges uniformly and absolutely (to 1/ Tg on any com-
pact set not containing points {z,w) for whichz — lis aninte-
ger. In case z = 0 we thus find the Fourier series for 1/6;:

( i e T 4 2771'111(‘) -1 — d —1 i ﬁ)(n)elm'nm
no- S n= — %

(compare Ref. 29, Chap. 21, Miscellaneous Examples, 14).
Note also that d ~' f,(r — s) for integers r and s is the limit of
the (rs)th element of the inverse of the matrix
(e =™ =!1"), 1= _ .. if B> c0; these matrices occur in the
study of the inverses of discrete Gauss transforms.?’ (2) As a
consequence of Theorem 4.4 we have that the set
(G (n,m)), ) <00, I8 complete in L?(R) if 1<p < o0, and not
complete in L *(R). This generalizes the result in Ref. 2
where the case p = 2 was treated. (3) Let feL '(R) so that for
every integer m

Com: == 1)"d " fR_,,T_, fo)=0

if 1— oo . Since for all integers k and /

d='S, (= "G mmGkINR_,T_, fo= Gkl),

where the series converges boundedly, we have

2 CumlG (mm),G (k1) = (£,G (k])).

It follows from Ref. 4, Theorem 4.1 and 4.1, Remark 1 that
f=2,,.¢,,G(n,m} with convergence in S’ sense.

4.5. In Ref. 2 it is shown that the set G (n,m) with
(n,m)#(0,0), (n,m)+ (k,.l,) is not complete in L *(R) if
(ko,1y) #(0,0). We generalize this result fo L #(R) as follows. If
k and [ are integers and FeS’, then R} R® , TF

=T(R T_,F)by3.3.S0,if Plz,w} = X, ,c e +2milvig
a trigonometric polynomial, then

T(ZcnR_wT_ fo)=P/ Tg.

Taking P such that P (,1) = 0, we get P/ TgeL =([0,1]°).
Since Tmaps L *(R) onto L ([0,1]3) DL =([0,1]?), we see that
there is an feL *(R)such that T f= P/ Tg, i.e., an feL }(R)
with (£,G (k,1)) = ( — 1)¥c,,. Taking cgy = 1,
iy, =(— 1) Tl* e, =0 otherwise, we get an feL X(R)
with (£,G (n,m)) = O for (r,m)%(0,0), (n,m) % (ko,lo). This fis
given by

f=fo+ (=1 RO T o
and it can be shown that feL 7(R) for all p with 1<p< .
Hence, the collection G (n,m) with (n,m)# (kq,l,) is not com-

plete in L #(R) for 1<p< . In case /, = 0 we can even show
that f(x) = (( — 1)) * '™ 4+ 1) fylx) = O (1/|x|)(|x| > )
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and that fis continuous. The discontinuities of £, (which
occur at the points x for which x — 1is an integer) are annihi-
lated by the factor { — 1)%* 'e*™* 4 { in this case. And if
k, = 0 we get an ffor which (7 f)(x) = O (1/]x|){|x]|— o)
and .7 fis continuous. One can carry this process further,
and it is easy to see that deletion of more coherent states gives
rise to the existence of smoother functions perpendicular to
all coherent states but the deleted ones. We note that the
latter assertion is, to some extent, also true if one takes more
general functions g than the Gauss function.

4.6. We now discuss an expansion which is in some
sense dual to Gabor’s expansion. Let 4 be a finite set of lat-
tice points, and let FES' satisfy (F,G (n,m)) = Ofor (n,m)éA. It
is clear that Fis of the form

F=G+d 'Y (~

(n.meAd

)"(F.G(nm)R T _, fo

where (G,G (n,m)) = Oforalln and m [thisis a consequence of
the formula (R _,,T_, fo,G (k,)) = (— 1)""db,,6,,;-]1 In
case FeS’ is regular and satisfies =, ,, |(F,G (n,m))} < oo, then
we can take for 4 all of ZXZ and G =0:

(‘)F= dzn.m( - l)nm(F,G (n>m))R —-m T~ nﬁ)'

For the proof we use that either function in (*) is regular (cf
Theorem 4.4) and Ref. 4, Theorem 4.1. Of course, (*) is false
in general if FeS’ is not regular.

We shall now give a connection with Whittaker’s re-
sult®® about interpolation over the Gaussian integers. There-
fore, let FeS' be regular and assume that
2, |(F,G (n,m))| < « so that the expansion in (*) holds for
F. Applying the Bargmann transform to both sides and using
that

(Bfollz) = ~ 6,(z)et™ /2mz,

BiR_,,T_,flg)=(—1)""e" Amin® + m?) + win + im)z
X (B fo)z + im — n),

B\(z + im — n)etmiz+im ="

— ( _ 1)!1 +m+ nmel(z]eyrz’e —ym(n? + m?) — mn + im)z,

(F,G (n,m)) = e ¥ +™(BF)(n — im),
we get
_ ( _ 1)” +m4+ lel(z)eyrz2

BR_,T_, fe) 27z 4 im — 1)

so that

(BF)z) = — de,(Z)e“”}Z( gyt om

X (BF}(H "‘ tm} o — ymm(n” + mzl‘
zZ—n+im

This is a slight generalization of the result of Ref, 38, because
there only functions f= BF are admitted that have growth
<(2,7/2), while we admit certain functions with
growth = (2,7/2) (cf. 2.7).

The expansion discussed here can be used to generalize
a result of Iyer and Pfluger*® about entire functions of
growth <(2,7/2) which are bounded at the lattice points.
Let @ = B f, where feS, and assume that @ is bounded at the
lattice points. We shall show that @ is constant, and to that
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end we suppose that ¢ has type 7/2. Since
Z*p (z) = (B(Q — iP)* f)(z)eB (S), we see that

Zp(s) = —db,2)e™ S (— 1)

% (n + imp (n + im)ei yin® + m)
z—n—im
for all k = 0,1,---. Since B (S) we know that
2o la,|lz]" = O (explim|z|?)(1 + |2]) %) for all K > 0
[here we write @ (z) = 2_ ,a,z"]. It follows easily that

#)= 3 aztp 2

1)n+m+nm ¢)2(n+lm)

= —db,(z)e"3 _
Z—n—im

n,m( -
Xe~ ymin® + mz"

Now the right-hand side has growth <(2,7/2), while the left-
hand side has growth = (2,7).* We conclude that ¢ has type
< /2, whence @ is constant by the result of Iyer and
Pfluger.

A trivial extension of this theorem is: If peB (S) satisfies
@ (n + im) = O((n + im)*) for some K = 0,1,-, then p is a
polynomial of degree <K. As a consequence we have: If /€S
and (£,G (n,m)) = O ((n* + m*)**exp( — imw(n* + m?), then
fis of the form =X _ ,a, 1, . We observe (cf. 4.5) that the
assumption *“ f£S” cannot be weakened to a condition in
which boundedness of only finitely many of the functions
Q*P'f is required.

With methods similar to the ones used above it can be
shown that if feS, 0<e; < 1,
(£,G (n,m)) = O [exp( — ime(n* + m?))] for all €, 0 < € < €,
then feN,(S "), where a = — llog(l — €).

4.7. Translating Ref. 4, Theorem 4.7 by using the Barg-
mann transform, we get the following theorem:

Theorem: Let feB (S'), i.e., let fbe an entire function
such that

flelexp( — ym|z|) = O ((1 + |2])")

for some N > 0. There exists a double sequence (c,,,,, ),,., satis-
fying c,,, = O((1 + n* + m?)¥) for some K > 0 such that

f2) =2, . Comexp( — dm(n® + m?)e™" + .

The convergence of the series is such that

fE)— Y camexp( —mln® + m?)
n* 4+ mi<L
Xefr(n + im)z CXP( _ £7T|Z|2) —0
(1+ |z

uniformly in zeC(L— o ) for some M > 0. Write
flz) = ¢"°g (2). If peL *(C) and

j P (z)

zZ—w
then there exists a unique sequence (¢,,,, ), With
¢,.—0 (n* + m*— ) such that the above expansion holds;
these c,,,’s are given by

dz—0 (jw|—>x),

4

= — ( . 1)" +m +nmd —1 em|z|2 -7 fl(zj¢(z’ . dz.
C 2m(z —n—im)
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Proof: Take heS' such that f'= Bh. This 4 has a Gabor
expansionh = 2, c,.. G (n,m) which converges in S’ sense.
Now apply B to both sides and use 2.7 and 2.8. The conver-
gence is in the sense indicated by Ref. 13, Sec. 4.1.

Assume in addition that geL *(C) and that

f ol

zZ—w
where @ is as in the theorem. Put f, = BN, h for a >0 (cf.
2.4). As N, heS fora>0wehave N h = 2, . c,..(a)G (n,m),
where

cnm(a) = ( - l)nmd ‘I(Nah’R —n T—— m fO)
by 4.4, Remark 3. By 4.6 and 2.8 we can write this as

Cum (@)

dz—0 (jwl—>w),

el(z)eﬂ?/Z

= —(=1Fmrrmd T e T A () dz.

c 27z 4+ im — n)

Since (BN, h )(z) = exp( — ko + Jr|ze ~ “|)@ (ze ~*) by 2.8(3)
and 6,(z) = O (exp(7(Imz)?)), we get

lime,,,, (@)

ail

= — (= 1y tmramg —| ohm® 121 0,2 (2) dz
c 2m(Z —n —im)

boundedly in (n,m) as §|@ (z)|/|z — w| dz is bounded in w.
We also have ¢,,,,—0 and

f{Z) = 2n,m Com exp( - %(nz + mz))emn * im)z.

Uniqueness follows from Ref. 4, Theorem 4.1, for it follows
from the assumptions about @ and 2.7 that AcL *(R).

4.8. We give an explicit formula for the unique coeffi-
cients ¢, (x,y) in the Gabor expansion X, ¢, (x.y)G (n,m)
of G (x,y), with ¢,,,,, (x,y}—>0(n* + m?>— ). Using the
formulas
Camxy) = — (= 1)""d “(GxpR_,T_, f),

(T.R, G (x,p), fo) = exp(milay — xb }(G (x — a,p — b), fo),
(G (X —ay— b )xﬁ))
= exp( — ymix —a)’ —4mly — b)*) (Bfo)lx —a — iy — b)),
(Bfollz) = — db,(2)*™ /2mz,  6,(z) = 6,(2),
we get
(GxyhR_,T_, fo)

= —dexp(— 7y — b} — wi(xy + ab))

XO\x—a+ily—b)2mx —a+ily—b)).
Hence,
Com (X,§) = exp( — 7y — m)* — mixy)
XOx —n+ily —m))/2mx — n + ily — m))

for all real x and y and all integers n and m.

If we denote for feS by c,,.(f) the unique Gabor coeffi-

cients in the expansion f= 2, ,c,,.( f)G(n,m), then we see
from Ref. 3, 27.12.1.5 that

Com(f) = f f (/.G (el (x.) dx dy.
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In particuiar,
fﬁGwﬁLG&ymmandx@~=qmwb)

which shows that ¢, is an “‘eigenfunction” of the kernel
operator with kernel (G (a,b },G (x,p)).

4.9. We next consider the completeness problem with
general lattices in phase plane where the cells have area equai
to one. Such a lattice can be described by six real numbers
Q1 @iy @13 Gy, oy To3y With @y @9y — @15 @5 = 1, by
putting
(XpmVum) =@ 0+ aomta;, a; 0+ aym-+ay)
for integers n and m. We have according to Ref. 3,27.12.2.1,
for all lattice points {a,6 } = {x,, ,..Vrm )

(rm,wy SR, T_ a(F1A.|1/)g’—~)
= 1o "W kaib; Uiy il 1408)
— %e - ”i“”W(gn,gm; f,g) — ( — l)nme— m’ab(f;R N mT— "g_—)

for f&S, geS(cf. 4.1 for the definition of W). Here I', ,, is the
special transform introduced in Ref. 3, 27.3.8 and 9 associat-
ed with the matrix

Ay, iy —iay/2
ia,, a, @y4/2
0 0 1

The above formula can easily be generalized to the case
that feS”, geSor fe8, geS or feL R}, geL }(R). Hence,
characterizing the set of all _feS’ for which
(iR _,T_,g) = 0for all lattice points (@, } = (x,, ..V, )
amounts to characterizing all FES' for which
(F,R_,.T_,G_)=0forall integers n and m, where
G=r 1,8

As an example take gt ) = 2" %exp( — 71 ?) and
@3 = a,; = 0. We have

(F 2.6,8)) = 2"%ay, ™ Pexp( — w21 + iay,a)/a3,)

ifa,, =0, and

r |Z.:}rlg)(z)

. _ a {a
:2!/4(022___“2]2) I/Zexp(_ﬂzz[ - 12 ' + H])
as, (@, + iay;) a5,

ifa,,#0 (the choice of the square root is determined by #; cf.
Ref. 3,27.3). Now if Rey >0, £,(t) = exp( — wyt?), then a
calculation shows that

(78, Nz.w) = expl — my2’}0s{mw + iyzhe = ™).
It follows that Tg, has zeros at the points (z + },m + }) with
integers 7 and m and nowhere else. Now the remark in Sec.
4.2 gives an indication of the general form of all FeS’ with
(FR_,T_,g,)=0for all n and m. In this case, however,
we can do better by using the Bargmann transform. Let
y#0. We want to characterize all FeS'wwith
(F,G (n + ym,m}} = O for all integers n and m. That is, we
must find all FeS' such that (BF) (n + ym — im) = 0 for all
integers n and m. Note that the function ¢, (7z,e ~ ™"~ "} has
zeros at the points # -+ ym — im, that there is an M > O such
that
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[#{mz,e =77 =) <Mexp(m(lmz)?) (z&C),
and that there is a X > 0 such that
|3 {mz,e = ™~ )| > Kexplarv?),

wherez = — v + v + a — | with v real and @ an even inte-
ger (compare Ref. 7, 2.6). Now we can proceed as in the proof
of Ref. 7, 2.11 to conclude that (BF)(z)

= e}, (rz,e ~ ™~ ")P(z), where Pis a polynomial. The
only difference from the proof quoted is that we need a theo-
rem of Phragmén-Lindel6f type for regions of the form

(p = arctany):

instead of

With the aid of the Schwarz-Christoffel formula one can
construct a conformal mapping 7 (continuous at the bound-
aries) that maps the second region onto the first one such that
{—-a+ij= —a+irla—4)=a~—]}

(i) =(— ¥ + i}-c0, and such that |7{x + iw)/w) tends to a
finite limit #0 uniformly in x, [x{<a ~ ] if w— 0. Hence,
the Phragmén-Lindelof theorem for the rectangular region
can be modified in such a way that we get the required
bounds on e ~ ¥ (BF )(z)/#,(nz,e ~ " ~ 7). From this we can
derive a similar characterization as in Ref. 7, 2.12. We note
that the more general problem of characterizing all FeS’
with (F,G (na + ym,ma™")) = 0 for all integers n and m can
be handled similarly (@ > 0). Finally, if we have a general
lattice {a,b ) = an(cosd,,sinb,) + Bm(cost,,sinb,) with
afsin(@, — 6,] = 1, and (F,G (a,b )) = 0, then we can use that

(BF)(z) = c¢(BN, . . F)e®z) (2¢C)
forsomec, {c| = 1(cf. 2.8 and the references given there). We
then get (F,G (a,b )) = 0 at the lattice points if and only if
(N, «F,G(na + pm cos(8, — 6,), ma™")) =0 for all inte-
gers n and m.

4.10. We finally show that every F&S * can be expanded
inan S convergent Gabor series. Qur proof consists of a
suitable variation of the argument used in the proof of Ref. 4,
Theorem 4.7, where the S'-case was considered.

We start with the observation that any FES * which can.
be written in the form

*F= 3 4,0 +iPYF,
n=0

where 7, eL (R}, [|F, |I<1, a, = O {exp{ — inlogn — Bn))
for all B> 0 has a Gabor representation. Indeed, as
F,eL *(R) we can find (c{3),, such that

F, =3, ,c8G k)

{convergence in S’ sense). Here we may assume in addition
that

e | <C{(log]k )2 + (log|i )'/?)
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for some C> 0 independent of n (cf. Ref. 4, Theorem 4.6).
Hence, since (Q + iP)G (x,p) = (x + )G (x,p),

F= S a,(3,ck +il)yGkl)).

n=0
Now we note that
S lancitk +i1y|<C $ a, lk+ il |+ = filk +il|),
n=20 n=20

where f(z): = 2,a,z" * . It follows from the assumptions on
(a,), and Ref. 21, Theorem 2.2.10 that fhas growth <(2,0).
Hence

3 la, etk + il)'| = O (exple(k * + 12)

n=0

for all € > 0. We conclude that

F= zk,,( 3 a, ek + il)")G (o),
n=0

with convergence in .S~ sense [this follows from the fact that
for every feS there is an € >0 such that ( £,G (k,/}))

= O (exp( — €k + 1))

Our next aim is to show that any FES* can be written in

the form (*) with F,eL X(R), ||F, |<1, a,

= O (exp( — in logn — Bn)) for all B> 0. So, let
F=37_,c,¢¥.€S", where c, = O(e*) for all € >0. Let k,,
ki, k,,- be a sequence of integers with 0 = k,<k,<k,< -,
and let

e = me(lk + 1)k "2

for k = k,,k, + 1,--,k, ., — 1,1=0,1,.-. The definition of
the e, ,’s is such that

kl+l

> ot =(Q+iPY Hz_ Vi1

K=k, k=k
We have to choose the k,’s such that for all B> 0,

kl~0I71

z Wi

K=k,

_ (k’ S e 12)“2 — O (exp( — 4/ logl — BI).

K=k,
Equivalently, we want the k,’s such that for all B> 0,
ki —1 2
A= Klleg |
K=k, K+ 1)

Denotefor! = 0,1,--by f{/)theinteger with the proper-
ty that |c, | <e'(k = 0,1,-, f(I) — 1),]¢z, | > €' [we may as-
sume that f(/)exists, otherwise (¢, ), isbounded andso FeS'].
Now f(/)/l— w0, for otherwise we could find an M >0 and
integers /,, [, with [, — oo such that f{l,)<Mi,,
|€ ru, | > expllx) for all k, contradicting ¢, = O (exp(le)) if
€< 1/M.Now putk, , ,: = min(/?, f(/))for/ =0,1,2,--. We
have

2

= O (exp( — ! log/ — BI)).

Kjypa—1 k !

S k1)
and it follows easily from Stirling’s formula that there is an
M > 0 such that

k\/(k + I \<Mexp(l — logl — I log(1 + k,/1)),
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for/ =0,1,-,k = k,,...,k; ., — 1. Hence,
A<Mk, | — k))exp( — I logl — I log(1 + k,/1)).

Since k,/lI—> o0,k , — k, = O(l?), it follows that
A, = O{exp( — !/ logl — Bl))for all B> 0, and this completes
the proof.

We mention a consequence: It follows as in 4.7 that for
every entire fof growth <(2,7/2) there exists a double se-
quence (C,,, ) Withc,,, = O [exple(n® + m?))] for all € >0
such that

f(z) = En‘mc”m exp( — %(nz + mZ))en'(n+im)z.
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The concepts of fall lines, valleys, ridges, and general stationary paths are defined for a potential
energy function on a Riemannian manifold. Some theorems governing their properties and
relationships are derived. These concepts are of interest in the classical mechanics of constrained
systems and in the theory of collective motions in many-body quantum mechanics.

PACS numbers: 02.40.Ky, 03.20. + i, 03.65. — w

1. INTRODUCTION AND DEFINITIONS

Recent attempts'-? to extract a collective subdynamics
from the dynamics of a many-body system make use of the
concepts of valleys and fall lines. The objective of this paper
is to examine some of their properties and to exhibit the
geometrical structures upon which they are based. Some as-
pects of this subject, in the context of the Earth’s surface,
were first addressed by Cayley® and Maxwell,* who also gave
the first expression of the well-known theorem relating the
numbers of pits, peaks, and passes on a two-dimensional
surface.

Consider a Riemannian manifold M with metricgand a
potential energy function v: M—R. For example, M might be
a configuration space for a dynamical system and g an iner-
tial mass tensor such that the kinetic energy is proportional
to the Laplace-Beltrami operator
—L—iinet(g) g‘ji. (1)
\/det(g) Ix ox’

Introduce the potential gradient dv* and its negative,
the force field

A4 =

F= —dv*. (2)
In terms of a coordinate chart {x’), Fis a vector at each point
with components F' = — g'dv/dx’.

Definition (fall line): A fall line is an integral curve of the
potential gradient.

A fall line is thus a line of steepest descent. Some fall
lines are illustrated, for example, in Fig. 1 for the potential
landscape model of Ref. 5 in which the potential is given in
terms of Cartesian coordinates on the Euclidean plane by

v=y"+ b’ —xp. (3)
This figure also shows the equipotential surfaces of v.

The potential (3) contains a minimum at the originand a
saddle point marked S in Fig. 1. It evidently has a valley
connecting the two, a maximal path (the opposite of a valley)
perpendicular to the valley at the minimum, and a ridge per-
pendicular to the valley at the saddle point. We refer to all
such paths as stationary paths. They are illustrated for the
potential landscape model in Fig. 2. One of our objectives is
to identify these paths precisely. For example, it is tempting

“'Work supported in part by the Natural Sciences and Engineering Re-
search Council of Canada.

"Present address: Ontario Hydro Dobson Research Laboratory, 800 Kip-
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to conclude from Fig. 1 that the valley might be the fall line
connecting the saddle point to the minimum,; i.e., the line
called by Maxwell* the “watercourse”. This we shall show to
be false.

Definition (minimal and stationary paths): A point m in
M is said to be on a minimal path if the square magnitude
giF, F)of the potential gradient at m is a proper minimum on
the equipotential surface through m. If g(F, F') is merely sta-
tionary, m is said to be on a stationary path.

This definition is phrased mathematically as follows.
Let X be a vector tangent to an equipotential surface at m (see
Fig. 3); i.e,, g(X, F) = 0. For m on a stationary path, the
directional derivative Xg(F, F') of g(F, F) in the direction X
mush vanish. Now Xg{F, F) = 2g{V,F, F),where V is the
covariant derivative for the Riemannian metric. Thus m is
on a stationary path if

gX,F)=0=g(V,F,F)=0. (4)
From Definition (2) of F we have g(X, F) = — Xv and

gVyF, F) = — (V4 F)u. Thus Condition (4) can also be
written

Xo=0=(VyFlp=0. (5)

As illustrated in Fig. 3 a minimal path can be either a
valley or a ridge or, in a multidimensional space, something
in between.

Definition (valleys and ridges): Let X be a vector tangent
to the equipotential surface at a point on a minimal path. A
minimal path is said to be a valley if

glVxF, X)<0 (6)
y
1.04 A \\
05 [ ; ES;;; j §
O_
-0.54
T T R  E— X
0] 05 10 L5 20

FIG. 1. Equipotential surfaces {light lines) and fall }ines {heavy linesj for the
potential energy function (3).
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FIG. 2. Fall lines {light lines) and stationary paths for the potential energy
function (2). Valleys are shown as heavy lines, a ridge as a dot-dashed line,
and maximal paths as dotted lines.

and a ridge if
gVxF, X)>0 {7)

for all such X.

Finally, we introduce the concept of a local normal
mode vector. First we recall that the Hessian Cis the bilinear
form given by the second covariant derivative of the
potential

C =YV (8)

Definition (local normal mode vectors): Local normal
mode vectors (7, ) are unit vectors for which C (7, 7,) is
stationary.

If (e;) are orthonormal basis vectors at a point, i.e.,
gle;, ¢;) = 6,; and (C};) is the matrix C; = C/e;, ¢;), the nor-
mal mode vectors at the point are obtained by an orthogonal
transformation to new basis vectors which diagonalize (C;;).

2. SOME THEOREMS AND RELATIONSHIPS

In examining the properties of fall lines and valleys and
their relationships, we shall need to make use of the fact that
Fis the gradient of a scalar field and thus satisfies an integra-
bility condition. Recall® that if X and Y are vectorsand w is a
one-form then

(Vxa)Y) — (Vyo)lX) = dw(Y, X). (9)
Now dw = 0 when @ = dv. Hence we have

(VxdvfY) — (Vydo)X) =0, (10)
which implies

gVyF, Y)=g(V,F, X) (11)

for any vectors X and Y.

F m_7x
It F

{(a) (b)

FIG. 3. A vector X tangent to the equipotential surface at a point m and
hence orthogonal to the force F for (a) a valley and (b} a ridge.
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Theorem 1: A point m of M is on a stationary path ifand
only if one of the local normal mode vectors is parallel to the
potential gradient.

Proof: First observe that

CX,F)= —g(VxF, F). (12)

This can be seen, for example, by expanding both sides in
terms of coordinates. From Eq. (4) it then follows that the
point is on a stationary path if and only if

gX, F)=0=C{X,F)=0. (13)
It now follows from the definition of local normal mode vec-
tors that F parallel to a normal mode vector and X orthogo-
nal to Fimplies C (X, F) = 0 and hence that the point is on a
stationary path. Conversely, if C (X, F) vanishes for all X or-
thogonal to F then, again by definition, F must be parallel to
a normal mode vector. a

Theorem 2 (well known): The hyperplane spanned by
the lowest frequency normal mode vectors at the potential
minimum is tangent to all generic fall lines.

Proof: Let (x') be local normal coordinates at the poten-
tial minimum; i.e., the origin of the coordinate chart is the
minimum and the tangents to the coordinate lines at the
minimum are normal mode vectors. The Hessian matrix is
then diagonal, C; = C,§;, and the normal mode frequencies
are given by (v/C,). In a neighborhood of the minimum we
can make an expansion of the potential v in terms of these
coordinates:

v=v(0)+—;—zCi(x")2+ (14)

Now let {x'(z }} be the coordinates of a generic fall line passing
through the minimum and parametrized by ¢ such that it has
a tangent at each point equal to the potential gradient dv*.

Then

dx’

= C.x' 4+ O(x*) (no summation) (15)
and hence
x(t) =a,e + 0(x¥). (16)
It follows therefore that
i)fi d_xl a:t ¢ P (17)
dt/ dt «o;C
which vanishes at t— — «, i.e., at x(t } -0, whenever
C, > C,. This proves the theorem. a

We now prove two theorems concerning the curvatures
of fall lines. First, since the force field F is tangent to the fall
line at each point, observe that, provided F does not vanish,
the condition that the fall line has vanishing curvature is that
the covariant derivative V. F of Fin the direction Fis paral-
lel to F. Note that the component of V. F parallel to F need
not vanish, even if the fall line is straight, because its slope
may be changing. In general one observes that, provided F
does not vanish, the curvature of the fall line is in the direc-
tion of the component of V. F orthogonal to F. A point at
which F vanishes is called a critical point.

Let /: M—R be the function

f=glF, F). (18)
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Then for any vector X at a point in M, we have
Xf=2g(VyF, F), (19)

and, since Xf = g(df ¥, X) and by Eq. (11) g(V,F, F)
= g(VF, X), it follows that

df* =2V, F. (20)

Thus the curvature at a noncritical point is in the direc-
tion of the vector df ¥, where df ¥ is the component of df *
orthogonal to F.

Theorem 3: All fall lines have vanishing curvature at
noncritical points on a stationary path. Conversely, if a fall
line has vanishing curvature at a point, that point is on a
stationary path.

Proof: On a stationary path, by definition, fis stationary
with respect to variations orthogonal to F. We have from
Egs. (4) and (11),

X, F)=0=g(VyF,F)=g(V.F,X)=0 (21)

and thus df ¥ = 0. Conversely, g(X, F) = Oand df ¥ = 0im-
plies that g(V, F, F) = 0 and hence that the point is on a
stationary path. O

If a line has vanishing curvature at all points it is said to
be geodesic. Similarly, if its curvature vanishes at a subset of
points we say that it is locally geodesic at those points. Theo-
rem 3 states then that fall lines are locally geodesic at noncri-
tical points of intersection with a stationary path. The theo-
rem leads directly to the following somewhat surprising
lemma.

Lemma: If a stationary path is also a fall line it must be
geodesic and conversely, if a fall line is geodesic it must also
be a stationary path.

Theorem 4: In a neighborhood of a minimal path, the
fall lines curve away from the minimal path.

Proof: Since, on a minimal path, the function f'is mini-
mum with respect to variations orthogonal to F, it follows
that at a point in a neighborhood of the minimal path the
vector df ¥ is directed away from the minimal path. Thus the
curvature of the fall line at the point, being in the direction
df ¥, is directed towards the minimal path. 0

3. DISCUSSION

Fall lines and stationary paths, particularly valleys, are
of special interest in the theory of collective motions for the
following reason. One of the objectives in collective theory is
to identify decoupled manifolds, whenever they exist. Con-
sider a particle that moves in a potential v on a Riemannian
configuration space M with kinetic energy proportional to
the Laplace—Beltrami operator (1). If the initial velocity of
the particle at a point in M is tangent to the fall line at the
point, then subsequent motion of the particle will remain on
the fall line if the fall line is geodesic. Thus geodesic fall lines,
if they exist, are decoupled submanifolds. In general, of
course, they do not exist and then the objective becomes to
find maximally decoupled submanifolds in order to obtain
an approximate collective subdynamics. Since stationary
paths are sets of points at which the fall lines are locally
geodesic, their identification is an important step in the the-
ory. Two candidates that have been proposed" for an ap-
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proximate decoupled collective configuration space, or col-
lective path as it is called, are the valley through the potential
minimum and the fall line from the lowest saddle point to the
minimum.

From the potential landscape model and Figs. 1 and 2
we might have supposed these two paths to be identical.
However, from Theorem 3 and its lemma we learn that this is
not so. The only situation in which a valley is also a fall line is
when it is geodesic, which is when it is a completely decou-
pled configuration space.

It is interesting to recall the observation of Maxwell*
that “In the pure theory of surfaces there is no method of
determining a line of watershed or of watercourse, except by
first finding a pass or a bar and drawing the line of slope from
that point.” In contrast, we find that valleys and ridges, as
opposed to watercourses and watersheds, are well defined
locally. Indeed the above theorems give a simple mechanism
for calculating stationary paths. Using Theorem 1, one ob-
serves that in the potential landscape model the equation for
a stationary path is the line

C(RF,F)=0, (22)

where R is a rotation operator that rotates F through an
angle /2. The use of this equation readily enables one to
construct the stationary paths shown in Fig. 2. Furthermore,
by inspection of the equipotentials and the use of Theorem 4
onereadily infers the character of the stationary path. For an
n-dimensional manifold the equation of the stationary path
becomes

CR,F,F)=0, i=1,.,n—1, (23)

where (R;) is a set of rotations of Finto linearly independent
orthogonal vectors.

An alternative method was advanced in the theory of
Rowe and Basserman.” First let (n, ) be the normal mode
vectors at each point and suppose that they are smooth vec-
tor fields over some domain of the manifold which includes
the potential minimum. The potential gradient can then be
expanded,

dv* =k°n,. (24)
By Theorem 1 it follows that on a stationary path
av® =k'n, {25)

where #n, is a particular normal mode vector field. For the
valley, n, is simply the normal mode of lowest frequency at
the potential minimum. Equation (25) is a practical equation
for the construction of a stationary path. Recall that the
critical points are the points at which dv* = 0 and that this
equation can be solved iteratively by Hartree—-Fock or New-
ton methods.® Thus, in a similar way, a stationary path is
constructed by finding the points at which the constrained
field dv® — kn, vanishes for varying values of k.

A more detailed discussion of the construction of col-
lective paths using these concepts will be presented in a fol-
lowing paper.
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We analyze a dynamical system with a finite number of degrees of freedom. A complete analysis
is presented both for first class constraints as well as for second class constraints. The results are
applicable to Yang-Mills fields as well as higher spin fields.
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|. INTRODUCTION

Constrained systems have been of interest in field the-
ory for a long time. In the “modern”era, Pauli and Fierz'
studied such systems by introducing further auxiliary fields
into the Lagrangian. These auxiliary fields then served to
eliminate unwanted spin components.

Presently, Yang-Mills fields provide a very interesting
class of field equations with constraints. The Lagrangian for
these fields is usually written as a quadratic form in the ki-
netic terms. We therefore construct a mechanical model (fin-
ite degrees of freedom) which has a Lagrangian with the
same kinetic structure as the Lagrange density of Yang—
Mills or higher-spin tensor fields.

Takahashi and co-workers? also studied constrained
mechanical models using Lagrange multiplier fields. Their
kinetic terms corresponded to systems of first-order differ-
ential equations. The results they obtained for their systems
are equivalent to those of Dirac,*® who studied constrained
Hamiltonian systems in general.

Having chosen a mechanical model with appropriate
kinetic terms, we apply Dirac’s method to it. This serves as a
preliminary to studying the quantization of higher-spin as
well as Yang—Mills fields; a task we carry out elsewhere for
higher-spin fields.*

In Sec. I we present the model and analyze the situa-
tion corresponding to the occurrence of only first-order con-
straints. Then in Sec. III we examine the situation corre-
sponding to the occurrence of higher-class constraints and
analyze it completely. In Sec. IV we state our conclusions.

Il. THE MECHANICAL MODEL

Consider the system with 2V degrees of freedom
é,, % a, b=1,..,N, described by the Langrangian

L=4XMud, +(b3cud, —cubd))

— @by — V(d..07) (1)

We assume summation over repeated indices.

The Lagrange density for Yang—Mills fields as well as
for a large class of higher-spin fields can be cast in the form
{1). The potential term V contains terms cubic as well as

quadratic in the coordinates ¢,,¢ ¥. It plays no role in the
constraint structure and will therefore be dropped from now

*Research supported in part by the Natural Sciences and Engineering Re-
search Council (NSERC) of Canada.

®)Permanent address: Department of Physics, Gifu University, Nagara,
Gifu 502, Japan.
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on. The “kinetic mass matrix™ M, as well as the matrix 7,
are both Hermitian. The matrix c,, is anti-Hermitian.

Since the matrix M is Hermitian, it can always be dia-
gonalized by a unitary transformation. We assume that this
has been done and

M,, =m,5, (2)
with no summation over the repeated index of the eigenvalue
m, now or later. This eigenvalue is called the kinetic mass.’

Dropping the potential term V, the Langrangian can
now be written

L= ma¢:5ab¢b + (¢ CarPp — ¢a*cab¢$b) _¢5:rab¢1(z-
3)

The canonical momenta conjugate to ¢ * and ¢, , respective-
ly, are

aL ;

a = a¢: =ma¢a +Cab¢b’ (4)
aL ;

;= 2, =my@F —d¥ca (5)

If the matrix M is nonsingular or, what is the same thing,
none of the kinetic masses m, vanishes, then no constraints
occur in the system and the canonical Hamiltonian

H =¢%m, +75¢, — L (6)
yields the equations of motion

b.=(8,H), ¢3=[8%.H.), (7)

¢a:[¢u’Hc}’ :':{ :’Hc}’ (8)

where the Poisson brackets are defined by’

{77':’¢b}
ar* g Ie/ or*
= — {¢,, ¥} = e % - b, o7 = —8ups
do. dmr*  O¢. Om*
(9)
[Tra’¢:}
* * 3
:—{(ﬁb*"rra}:aﬂ'a a¢b_a¢b 77." :_aab’
(10)

and all other Poisson brackets involving only ¢,,¢ ¥,¢ *,¢,
vanish. Thus such a system is completely determined.

We now assume, therefore, that the matrix M is singu-
lar of rank r < N. By a suitable choice of the unitary transfor-
mation that diagonalized M we can arrange to have
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=12,..N—r,
=N—-r+1,
N—r+2,..,N {11)

We adhere to this notation of letting lower case Latin indices
from the middle of the alphabet, namely i, j.k,..., run from 1
to N — r and lower case Greek indices from the begining of
the alphabet, namely @,8,7,..., run from N — r + 1to V.

The Euler-Lagrange equations corresponding to the
Lagrangian (3) now split into equations of motion

mﬂ(&.ﬂ + zcﬁb‘»‘b + 15,8, =0,

m ¢*+2¢*caa +¢a aa_o’ (12)
and equations of constraint

2cib¢5b +rpds =0,

26 3cs + @ 31y =0. (13)

In terms of the canonical momenta, these constraints may
also be written

Xi=m; —CpPp =0,

—~ ¥, =0. (14)
Here we have followed Dirac’s terminology and introduced
the ‘“constraints” y,,y7F.

For this particular case, the canonical Hamiltonian
reads -

m, =0 for a=i, jk,..
m,#0 for a =apB,7,..

X e
X =T7;

1
H =(m} +¢:caa)m—6aﬁ(773 "Cﬁb¢b) + G Xrds-
’ (15)

The total Hamiltonian [yielding the constraints (14)] is given
by

H=H. +uly; +x'u; (16)
where we have introduced the Lagrange multiplier fields
u*u.

[y

The constraints [Eq. (14)] are not merely initial condi-
tions but must hold for all times; thus they must be indepen-
dent of time. This requires that both y; and y * vanish identi-
cally. Writing out these consistency conditions, we obtain

Iy:
.,' — AL + i’H = 0
Xi=— {xH |
. 2
= — CigTg— — (Cip — Cp—Cp, + Tip)Py — 2c,u;
Mg Mg
= — 27y — 26,0, — 2c;u; (17}
and
. ayr
Xf=—r-+hH]=0
2, "y 2
= —7racaj + ¢ a (caj + Caa——caj - raj) + 2“?%
m, m,
=2r¥d, —2p ¥e, + 2u¥cy, (18)

where we have defined the new matrices dg.d,; and ey, e
The retention of the terms involving ¢ corresponds to
time-dependent external forces being present.
If the N — r by N — r submatrix ¢; is nonsingular, we
can solve Eq. (17) and (18) for the Lagrange multiplier fields
u;,uf and substitute the results back in the total Hamiltonian
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(16). The Hamiltonian so obtained involves the constrained
variables. Thus, to obtain the true equations of motion, it is
necessary that the Poisson brackets themselves take the con-
straints into account. Such generalized Poisson brackets
were defined by Dirac.?

The only constraints involved here are the “first-class”
constraints given by Eqs. (14). We now illustrate the han-
dling of these constraints. As a first step we compute the
“‘constraint matrix”

rxl ,x,}
[0 —2c,-j] 20
T l2g; o T (20)

where the tilde means transpose. The inverse of X is easily
found to be

k=0
¥ 0

The generalized Poisson bracket or Dirac bracket?® for
any two dynamical quantities F and G is defined by

- 2EXK TG} (22)

The ordinary Poisson bracket on the right is defined by Ca-
salbuoni.® Writing this out, we get

(21)

[FG}*={FG]

(F,G}*={FG} +i{Fxrle;
—{Fx.)é;

"HxG )
"xG . (23)

This allows us to compute the generalized Poisson brackets
for any coordinates, velocities and momenta. In particular,
we get

(6%d,)* = ——5.,, 24)
ma
(62.65)* = —6.. (25)
m

a

Now using the fact that

b =7y — Cardy) (26)
m

a

we get the true equations of motion from

.. . . 1
¢a={¢H’H}:{¢a’H}*_—{¢a¥/¥r}c’j_1{xj’H}
. 1. . ady;
= a’H * N {¥ar f l_l / 27
(¢ }+2{¢x},at (27)
Here we used the consistency condition
Ay;
H = — 2L
bl = == (28)

Evaluating the various Dirac brackets we finally get the true
equations of motion, namely

maaaﬁ¢-ﬂ + (2¢45 — CaxCir lclﬂ)¢.B + (Fap — CaiCp )by, = 0.

{29)
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This determines completely the system for the case of
first class constraints only. Suppose, however, that ¢;; is sin-
gular. In this case, further *“secondary” constraints appear.
We examine this situation in the next section.

lll. HIGHER CLASS CONSTRAINTS

In this section we assume that the N — r by N — r sub-
matrix ¢;; is singular of rank 7, so that further or second-class
constraints occur. Since ¢; is anti-Hermitian, it can also be
diagonalized by a unitary transformation S. This diagonali-
zation does not change the diagonalization of the Kkinetic
mass matrix M_, since if either of the indices q, b, equals i, j
{i.e., lies in the range 1,...,.N — r), the matrix elements M, ,
vanish.

Thus we can write

S ck,S,j =¢85, (30)

where no sum occurs over the index of the eigenvalues c,.
The eigenvalues are arranged so that

i

¢, =0 fori=I1JK,. =12, ,N—r—r, (31)
¢,#0 for i=ABI,..=N—r—r +1,.,
N—r (32)

This notation will again be adhered to with upper case
Latin letters IJ,X,..., having the range 1 to N —r — r, and
upper case Greek letters 4,B,7,..., having the range
N—r—ri+1toN—r

Now operating on Eq. (17) with S ~' from the left we can
cast it in the form

Syl =-S5 'dipmp ~ S i ey (33)
Now using (31) and {32) this becomes
uy = —dyms —egld,, (34)
0=y{"=—dYjm; — s, (35)
where
WP =Situ, =i, 36
iy =185, di=Si'dy (37)
Cp
1. _
eﬂslll = C—SBi ‘e, ey =87 leib' (38)
B

Similarly, by operating with S from the right on Eq. (18), we
obtain

ulie = _ ﬁ;‘d“’ + ¢ *ell}, (39)

0 =X9)t5 —_ (11 ¢ *etll (40)
where

> =urs,,, utll)* =urS,, (41}

d by = daj‘s}A b4 d 2} = daj‘S}'J’ (42)

A
e =e, SJA el =e,S,. (43)
A
Also, as is easy to verify, we have
urx, = ull! + ol (44

and

738 J. Math. Phys., Vol. 23, No. 5, May 1982

X = )+ e, (45)
where we have further defined
Xa'=S5'x =S5'm =S5 'cuds (46)
Xs™* =x}Sip =S + ¢ ¥cy;S- (47)

The total Hamlltonian ( 14) is then given by
H=H +(—7td, +¢rei's + 1™ —
_ e(l ¢b) +u Utx(l) +X l)tum (48]
where we have eliminated the Lagrange multipliers «!’ and
w1 by using Eqs. (34) and (39). Thus only #/""* and /" re-
main undetermined. The corresponding constraints are y\'!

and y'"*. Again consistency requires that these constraints
be time-independent. Thus we get

)
d| 88Tg

¥y =0= x> (49)
Writing these out we obtain the equations
f(llJ)u(Jl) = - Sh—' ll’r -85 lpiijA—X(A”
+8;7 '8+ S5 "hid, (50)
and
u(ll}*f(lfl) —XJ*S Xg)*g_sﬂl plj i
+ FagaJSjJ + ¢ ka_/ Iy (51)
where we have introduced the notation
f dmcaj - 1]’ (52)
Dy = €i,dy; +dgeg = —pf, (53)
; i
g:B = di/] - (diycyﬂ - elﬂ )— + (diy Cyk - el’k)
Mg
1
XSip—S g1 'djz, (54)
Cg
hy =é, +{dics — el —digra, + dincon — i)
1
X Sks—S 51 '€ {55)
Cp

and all quantities with a superscript (1) are similarity trans-
formed with S. Thus, for example,

fO=8;7%Su fil =87 fySi etc. . (56)
Now if f1}) is nonsingular we can solve Eq. {(50) and (51)
for the Lagrange multipliers #!", u}"* and replace the results
in the Hamiltonian {48). This is the case of second-class con-
straints. If £1}) is singular such a solution is not possible and
we must again diagonalize /) to obtain further higher-order
constraints y @, y ®* with corresponding Lagrange multipli-
ers. The situation is now the same as the transition from first-
class to second-class constraints and thus may be treated in
the same manner. Since we started with a finite matrix, this
procedure must eventually exhaust all constraints.

This shows that higher-class constraints are treated in a
manner similar to second-class constraints and involve no
new concepts. For this reason we assume that %} is nonsin-
gular. This allows us to solve {50) and (51) for the Lagrange
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multipliers #/ and «{'"* and replace them in the total Hamil-
tonian. The Hamiltonian so obtained still involves con-
strained variables. This means that the evolution equations
for all the dynamical variables can again only be obtained if
the Poisson brackets themselves take the constraints into
account. These are again the generalized Poisson brackets

{X(l) (U*}
= _SITlgdiBWB +eib¢b’ T daj +¢a l’l]}

=8 '(dpes + €idy)Sy =Pus

with similar results for the other brackets. We can, therefore,
obtain the complete “constraint matrix’":

dlfﬁned by l?irac in terms of the usual Poisson brackets and [ riasl ™ o o)
the constraints. (M o 01) (e (1) (T <1) SR
The constraints for this case are simply tx lA xe] X ; ’}/ ? W ; “ } l,l(’” :1)1 }
sl ™ DA ™)
X4 =0 57) D) ) ) bl
=0, (58) ol
N 0  —2,8, O i
X = 0, (59) 2, 5AB 0 f(n 0 0
xi* =0 o T o om0 |
The Poisson brackets between any two of these is easily com- ~f 0 -py 0
puted. Thus, for example, using (9), (10} and (35), (40) weget  The inverse of this matrix exists and is given by
1
[ 1 Uz 417 ! 7 ~—1-
O —'—(5AB - _fAIA 124 fJB} 0 - —fAKA KJ
2c, 2c, 2c,
1 U s g —1p) L
2_(5,48 - i—fAlA 14 JB) 0 AKA O
_ C4 C4 2cA
K-t (63)
0 —Au'“’zc 0 —4;"
B
45— 0 a5 0
L Ch .
The notation used here is
1
Ay =p) +f‘1’$2— 78 (64)
Cp
- B <1 =
A, =py +f(111;5"c—f(1;.'1 (65)
B
Using the inverse given by Eq. (63) we obtain the generalized Poisson or Dirac bracket.
(FG)* = (FG] + (Ei |56 — 5 /4 s TIG
C4q
1
— EX™A G G ) — (Fxa™)s f“;A G}
B
1 1
— B4 5 (G | — (P60 — T34 5 TG )
A A
~ 1 s~
+{FXA 5 Fi ™Gl + Fodl s~ ad 5 G 1 + (F, x4 5 (G . (66)

A

We have used this equation to obtain the generalized Poisson brackets for all the coordinates @, ¢ * and the momenta 7*, 7

The results are tabulated in an appendix.

Of immediate utility to us are the following generalized Poisson brackets:

[¢a9¢ﬁ} - 5‘15—_ + 2dalSJIA 1y l.f‘(”
B
(62.05)*

mg

L a0 a5, 5L (67)

B

=6aa——2Ja.-S',~7"’,ﬁ';gic—J“’ —d, S7d 5L (68)
B

mﬁ

Using these results we can now obtain the true equations of motion from the total Hamiltonian. T hey are given by
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bo = {4a.H }, (69)
¢a = {¢a ’H }’ (70)
where again the ordinary Poisson bracket on the right is obtained by using Eq. (56) and the consistency condition
.,
= _ . 71
{xsH} ar (71)

After a rather tedious calculation involving the repeated evaluation of generalized Poisson brackets we arrive at the true

equations of motion:

1

.. _ 1 1 _ -
ma5aﬁ¢ﬁ + Z[Caﬂ +faijJA 7; l.fflll!zc_SBjcjﬁ - 2caiSiA2—c_(5AB - 5“‘ 1411'4 ¥ f%)saj lch
B A

1

Cyq

_ 1 e ;
- Caisu'z—_ G4 7 1SJj 1( f;’ﬁ — Cig) — ?faiSuA u IS.lj I f}ﬁ —ci)|és

€4

_ _ . 1 1 _ _ .
+ [rab + foiSud 1 lf(Jl)s—SBj 1(’}'1) + cjb) —2¢,:Si4 ;(‘iw - ZC_fQ}A 34 lftJll)a)Snj ](rjb + cjb)
A 4

1
2cp

1 )4 —1¢—1
— CoiSia 2_c—f'A}A 3] SJj (djﬁrﬂb - 2djﬁcﬁb
4

CONCLUSION

We have completely analyzed a Lagrangian system
both in the case of only first-order constraints as well as in
the case of second-order constraints. Our analysis also
makes it clear how to proceed for higher-order constraints.
The form of the Lagrangian is such that our results are im-
mediately applicable to a variety of constrained systems.
Thus, both the Yang-Mills Lagrange density as well as

APPENDIX

. 1 o —
—2é,) — TfaiSiIA 94 ]SJj l(djﬁrﬁb

—2djgeg, — 2€;) |6, = 0.
(72)

many Lagrange densities for higher-spin fields can be cast
into this form. The results obtained remain valid in the pres-
ence of external forces.

One final conjecture. The way the kinetic mass m_, ap-
pears as a multiplicative factor in the various Poisson brack-
ets suggests that the indefiniteness associated with the quan-
tization of higher-spin fields may be related to the relative
signs of the kinetic masses. We propose to investigate this for
some specific field theories.

We list here the various generalized Poisson brackets for the case of second-class constraints.

(6,671 = —Siqi—;(aw —E—i:f;,'a SIS 5, (A1)
(2] = —SfAzl;f;','A 'S5y, (A2)
($7r1* =8, — Siq ZCLA@B - Ej:f';m 5 IS ey + S z-c‘— WA S, (A3)
(3} = —S., icl—A(s,,B - E%A—f‘;}A 5 IS 5 e + s% WA 'S i ey, (A4)
(b 2)* =douSud s f%i;?;, 3 (AS)
(G 31*= —duSud i lSJIdIBr (A6)
(Bor?)* = doiSurdd 1o 'fs';ts scy +duSud 'S i e, (A7)
(B3] * =80y +duSutd 13 y‘;),és 5 + duxSud 17 'S 7 ey, (A8)
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Hamiltonian perturbation theory in noncanonical coordinates

Robert G. Littlejohn®
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The traditional methods of Hamiltonian perturbation theory in classical mechanics are first
presented in a way which clearly displays their differential-geometric foundations. These are
then generalized to the case of noncanonical in phase space. In the new method the Hamiltonian
H is treated, not as a scalar in phase space, but as one component of the fundamental form p

dq — Hdr. The perturbation analysis is applied to this entire form, in all of its components.

PACS numbers: 03.20. +1,02.40. + m

1. INTRODUCTION

It is becoming widely appreciated that a Hamiltonian
system is better characterized by its abstract properties rath-
er than by any necessary relation among ¢’s and p’s. For
example, preservation of phase volume, regardless of the co-
ordinates used to express it, has certain definite conse-
quences, such as the impossibility of bounded attracting sets.
The situation is somewhat analogous to the Pauli matrices in
quantum mechanics: It is reassuring to have the standard
representations, but all that is ever really called for is their
formal, algebraic properties. Of course, Darboux’s theorem
always guarantees the existence of ¢’s and p’s, at least locally,
so that it is never wrong to derive relations by using these
coordinates.

Nevertheless, there are a number of practical reasons
why noncanonical coordinates arise in applications. First,
Hamiltonian systems are sometimes discovered in a context
that is independent of Lagrangians or the Legendre transfor-
mation.’ Canonical coordinates may or may not be offered
up in such circumstances. Second, the use of canonical co-
ordinates may demand the choice of a gauge with no phys-
ical significance; this is seen in ordinary electrodynamics,?
and it is a pervasive feature of Hamiltonian formulations of
fluid mechanics which employ the Clebsch potentials.*
Third, the use of canonical coordinates often involves the
representation of physically interesting quantities by means
of awkward mathematical constructions. For example, the
Lagrangian coordinates in fluid mechanics indicate where a
fluid element was at some initial time. They are related to the
actual, Eulerian position of a fluid element by the awkward
and impractical device of integrating along streamlines; and
yet they provide simple coordinates for fluid flow.> Similar-
ly, the a and 3 coordinates* commonly used to represent
magnetic fields are canonical coordinates of a kind (on the
symplectic manifold consisting of magnetic field lines), and
yet in order to know the values of a and /3 at a point x of
space, one must follow a field line back to some reference
surface. Likewise, a direct application of Darboux’s theorem
often yields canonical coordinates whose relation to physical
coordinates is nonlocal in nature. Fourth, in multiple time-
scale phenomena, the different p’s and ¢’s on the different
time scales evolve in time relative to one another in some

*Present address: Department of Physics, University of California, Los
Angeles, California 90024,
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ratio €; thus the Hamiltonian A must depend on some of the
¢’s and p’s through such combinations as g, €p. At best, this
is awkward; at worst, it can present serious obstacles to a
Hamiltonian treatment of the problem, so that investiga-
tions are sometimes carried out with non-Hamiltonian
methods.>® These problems can often be obviated by using
noncanonical coordinates.”’

For all these reasons, noncanonical coordinates for Ha-
miltonian systems are receiving increasing attention.?~'°
This paper is a contribution to the techniques of performing
calculations in noncanonical coordinates and, in particular,
perturbation calculations. In some sense, the methods we
propose in this paper are similar to the asymptotic methods
of Kruskal,'' but they are explicitly Hamiltonian
throughout.

There are several reasons for preferring Hamiltonian
perturbation methods, including the noncanonical methods
we present here, to non-Hamiltonian methods. One is the
essence of practicality: The sheer labor of perturbation cal-
culation is vastly reduced with Hamiltonian methods. An-
other is the philasphy that if one is given a physical system
that is Hamiltonian, then it is best to approximate it with
other Hamiltonian systems. In this way conservation of en-
ergy, Liouville’s theorem, and other consequences of Hamil-
tonian systems are all valid for each of the approximations.

In this paper we present the outlines of basic perturba-
tion methods for noncanonical coordinates. We pay no at-
tention to more sophisticated techniques such as supercon-
vergent methods,'? since we presume that these techniques
can be adapted to noncanonical variables when the basic
methods are understood.

In Secs. 2 and 3 we describe traditional perturbation
methods. Section 2 is devoted to non-Hamiltonian systems,
while Sec. 3 describes Hamiltonian systems. In these de-
scriptions we call on the theory of differential forms, which is
especially appropriate for Hamiltonian systems.'*"* Our
purpose in doing this is to clearly identify the differential-
geometric underpinnings of these traditional methods,
which are generalized in later sections. We do not intend
these descriptions to provide a tutorial on the traditional
methods, for which we recommend Nayfeh'® and Cary."’

The language and notation of differential geometry and
differential forms has achieved only an incomplete popular-
ity in the physics community today, but it is one which is
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growing, and one which we wish to endorse. Out of numer-
ous references on this subject, we find Spivak'® to be infor-
mative and entertaining. To make the presentation more
readable, however, we have converted all the differential-
geometric statements of importance into component lan-
guage, so that they can be understood in terms of traditional
tensor analysis.

In Sec. 4 we present an invariant formulation of Hamil-
tonian systems which describes how the fundamental form
p dg — H dt is related to the equations of motion, and how
the two transform under arbitrary coordinate transforma-
tions. In Sec. 5, the new perturbation methods, based on this
transformation theory, are described.

2. NON-HAMILTONIAN PERTURBATION METHODS

We consider an n-dimensional manifold M endowed
with a vector field X. In some system of coordinates {x'}, we
assume that X has the representation

dx’

dt
where € is an ordering parameter. We treat all power series
formally; as often in perturbation theory, convergence is of
secondary concern to us.

By hypothesis, the leading term X, of Eq. (1) represents
a solvable system, so that the integral curves of X are ap-
proximated by the known integral curves of X,,. These are
often represented by straight lines in the coordinate system
{x'}. The basic strategy of perturbation theory is to seek a
coordinate transformation to new coordinates {X'}, such
that in the new coordinates the new equations of motion are
simplified. Since the system (1) is solvable at lowest order, the
coordinate transformation is the identity at lowest order, i.e.,
X =x"+ Ole).

In this point of view, we have two coordinate systems
{x'} and {X'}, and a given point xeM is represented alternati-
vely by its coordinates x’ or X' in the two systems. The vector
field X in the abstract does not change under the coordinate
transformation, only its coordinate/component representa-
tion. We will call this the *“passive” point of view.

In what follows, however, we adopt the ‘““active” point
of view. For this we consider mappings 7:M—M, and we
write Tx = X. That is, we will write x for a typical “old”
point of M, and x for a typical “new” point. When coordi-
nates are called for, we will write x‘ and ¥ for the coordinates
of the old and new points, relative to a single coordinate
system [x'}.

In the active point of view, the vector field X is changed
under the mapping into a new vector field X by the derivative
or tangent map T :

X=T,X. (2)

The coordinate representation of this is

=Xxix)= ¥ eXix), (1)

. ET I
X'(x) == X"x), 3
) =25 X ) 3)
in which, as throughout, the summation convention is em-
ployed, unless greater clarity is called for. The previously

mentioned strategy for perturbation theory is stated in the
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active point of view by saying that we seek 7 such that X is
easier to solve than X. The precise criterion depends on cir-
cumstances; sometimes one asks for X which has the same
(straight) integral curves as X, In this case, one has “trans-
formed away” the higher order terms of X.

One must be able to transform scalar fields under T as
well as vector fields. It is best to treat scalars as O-forms on
M, and use the pullback T *. Because the pullback 7 * works
in a direction opposite that of T, we define a transformed
scalar §'in terms of a given scalar s:M—R by means of

s=T%" lS. (4)
In terms of values, this can be written
(T *3)x) = s(x) = 5(Tx) = 5(x%), (5)

where we have used x = Tx.

Particular scalar fields of interest are the coordinate
functions I :UCM—R, i = 1,...,n, which satisfy x’ = I'‘(x)
whenever x' are the coordinates of the point xeM. The set
UC M is the range of the chart. Applying I’ to the point
X = Tx, we have

X =I'%=1I(Tx)=(T"T')x). (6)

This is often written (imprecisely) as ¥ = Tx". The fact that
points are pushed forward by T and differential forms (in-
cluding scalars) are pulled back by 7 * is the source of many
sign errors and much confusion in practice.

In the so-called Lie transform method, '!® one uses trans-
formations T which are represented as the exponential of
some vector field, or rather compositions of such transfor-
mations. To begin, let us consider a vector field G, which is
associated with the system of ordinary differential
equations,

dx' i

e G(x). (7)
We denote the advance map associated with these equations
by T°%, so that if x and X are initial and final points along an
integral curve of {7), separated by elapsed parameter ¢, then
X = T “x. In the usual exponential representation for ad-
vance maps, we have T = exp(eG ). We will call G the gener-
ator of the transformation 7.

The tangent map 7', can be represented as an exponen-
tial involving the Lie derivative L which, acting on vector
fields X, is defined by

LoX=lim- (x— T5X), (8]
e—0 €

in which both X and T, X must be evaluated at the same
point, say x = T ~ “x. The Lie derivative is simply the Lie
bracket or commutator of the two vector fields:

LoX=[GX],

(LGX)i=GinJ—XjGiJ. 9
Then we have
T, =exp(—e€Lg) (10)

Thus, the relation X = T, X, as in Egs. (2) and (3), can be
written as a power series of commutators.
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The pullback T “* can be represented similarly. The ac-
tion of L on an arbitrary differential form « is given by

LGazliml(T‘*a—a), (11)
e—0 €
so that
T* =exp( + €Lg). (12)
In particular, if « is a scalar s, then
Les=Gs=G'% (13)
ox'

In perturbation theory, one applies the tangent map to
the vector field X [Eqgs. (2) and (10)] in order to make the new
vector field X easier to solve. This involves solving a simple
differential equation for G based on the given desiderata for
X. Then the transformation of the coordinates themselves
[Egs. (5) and (12)] can be written out using the pullback.

However, it is generally only possible to meet the desi-
derata for the O (€) term, X, of Eq. (1), with a single generator
G in the form we have given. Therefore we introduce a se-
quence of generators®® G,, G,,..., Lie derivative operators
L, =L, etc., and transformation operators, T, T5,..., de-
fined by

T, = exple"G, ). (14)
The corresponding tangent maps and pullbacks are

Tn* = exp( - enLn )’

T* = exp(+€'L,) (15)

In effect, each successive T, takes care of the vector field X of
Eq. (1) at each successive order in €; hence the €” factors in
the exponent of Eqgs. (14) and (15). Then one has the overall
transformation operator T which satisfies

T=-T.1,T,, T7'=T;'T;'T;", (16)

T, =TT, T, ' =T,'T;,'T" (17

T*=T*T*T*., T* '=.T* 'T¥ 'T¥" "

(18)

Note the reversal of factors in Eqgs. {18).

An alternative to the use of a sequence of generators is
to allow the one generator G of Egs. (7) to depend on €, giving
a nonautonomous system of differential equations.?' This

method appears to be less efficient at higher orders,
however."”

3. TRADITIONAL METHODS FOR HAMILTONIAN
SYSTEMS

In Hamiltonian systems the manifold M is a 2N-dimen-
sional phase space, which we denote by . Instead of the
coordinates x’, we use canonical coordinates (g;,p,),

i =1,...,N. We write X, for the vector field on ¢ which
corresponds to X in Eq. (1); X, is determined from Hamil-
ton’s equations of motion and the Hamiltonian H:
- dg,
Xi = 4 _ E?_J_LI.
dt  dp;
dp, _ JH

i+N _ _
XiFN=""

—, i=1,.,N (19)
dt dq;
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We assume that H is time independent. Time-dependent Ha-
miltonian systems are subsumed under the formalism of the
next section.

The vector field X;, of Eq. (19) is linear in the 1-form
dH. The general relation between a Hamiltonian vector field
X, and the scalar 4 can be expressed in the component form

i 2N i gi
(X4) ,;1 J 5 (20)
where z' = (q,,-...g 5 P1»--P ). The matrix J 7 is the compo-
nent matrix of a second rank, contravariant tensor J. The
components of J are the Poisson brackets of the coordinates
among themselves, i.e., J ¥ = {Z/, z/}. We will also write Eq.
(20} in the index-free form X, = J (d4 ).

The Hamiltonian H is assumed to have the power series
representation

H= % ¢H, (21)
n=20

in analogy with Eq. (1), and H,, is assumed to be solvable.

Instead of transforming the vector field X,, directly, one

transforms the Hamiltonian H into a new Hamiltonian 4. H

and H are treated as 0-forms, i.e., scalars, and the transfor-

mation equation is

H=T*""H, (22)

as indicated by Eq. (4).

In Hamiltonian perturbation theory the transformation
T is usually required to be a canonical transformation (but
see Sec. 5 below). Canonical transformations have the virtue
that they preserve the form of Hamilton’s equations of mo-
tion. Canonical transformations can be represented by
mixed-variable generating functions, as in the Poincaré—von
Zeipel method,'® or by means of Lie transforms,'” as in Sec.
2. In the latter method, the vector fields G, of Eq. (14} are
specified by scalar generating functions g,,, through Hamil-
ton’s equations, i.e., the tensor J:

G, = —J(dg,) (23)

The minus sign is conventional.
The Lie derivative operators L,, when acting on sca-
lars, are now represented by Poisson brackets:

L,s={g.s} (24)

In particular, Eq. (22) is a power series involving Poisson
brackets. In Sec. 5 we will consider the action of the L, on
differential forms of higher rank.

For Hamiltonian systems it is seldom necessary to ap-
ply the Lie derivative operators L, to vector fields, because
the only vector fields of interest are Hamiltonian vector
fields. For these, one uses the relation

[XA"XB]:XBB,AI’ (25)

in which vectors correspond to scalars through Eq. (20). In
short, Hamiltonian vector fields can all be dealt with implic-
itly through their (scalar) Hamiltonian functions.

Typical transformation desiderata for Hamiltonian sys-
tems are the elimination of the dependence of H on one or
more of the ¢’s. These requirements produce simple differen-
tial equations for the generators g,,.
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4. AN INVARIANT FORMULATION OF HAMILTONIAN
MECHANICS

We consider the space @ X R = E, which we call the
“extended phase space;” it is a (2N + 1)-dimensional space
on which we employ the coordinates (g;,p;,t), i = 1,....,N. In
this space we introduce the fundamental I-form y, given by

y=p;dq — Hadt. (26)

The Hamiltonian  is allowed to depend on time.
The exterior derivative of y is a 2-form w:

o =dy=dp;, Ndq, — dH A\dt. (27)

In the coordinates (g;,p;,? ), the component matrix w,; can be
partitioned by splittingthe coordinatesintotheir4& + N + 1
parts:

0 —I — GH /3q
w;,=| +I 0 — GH /dp (28)
+0H/3q + 0H /dp 0

Here I represents the N X ¥ identity matrix. The upper
2N X 2N diagonal submatrix is nonsingular, so @, which
must have even rank, has a rank which is precisely 2V.
Therefore at each point zeE, precisely one of the 2N + 1
eigenvectors of @, is null, i.e., has eigenvalue zero. Indeed,
this real null eigenvector can be taken to be (H /dp;,

— 0H /dq,,1)in the (¢, ,p;,¢ ) coordinates, as is easily verified.

The null eigenvector of w,; establishes a one-dimension-
al subspace of TE, for each z€E, i.e., a one-dimensional dis-
tribution on E. The corresponding integral manifolds are
curves in E which are nowhere parallel to the surfaces
t = const. These are the “vortex lines” of the fundamental
1-form .

The vortex lines specify the motion corresponding to
the given Hamiltonian AH. This is easily seen by promoting
the eigenvector field determined above into a system of ordi-
nary differential equations:

49, _OH dp. _ OH dt _,

ds dp; © o ds dq, " ds
The parameter s is of no significance; when it is eliminated,
we have Hamilton’s equations of motion in the usual sense.

The preceding construction is a demonstration, in the
coordinates (g;,p,,t ), of the fact that the time evolution of a
dynamical system is invariantly associated with the funda-
mental 1-form y. More generally, let {z'}, i = 1,...,2N + 1,
represent an arbitrary coordinate system on E. Usually one
would take z2¥ + ! = ¢, but this is not essential. From 7, we
can derive the 2-form w. The components w,; of w can always
be represented, by permuting the order of the coordinates z/,
if necessary, so that the upper 2NV X 2N diagonal submatrix is

nonsingular. Let us call this submatrix &, and let J 7 be its
inverse:

(29)

o ]
S JH5, =8 (30)
k=1
If22Y* ! =1, then J ¥ = {7, z/}, as before. Then the null ei-
genvector X of w is represented in components by
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Ay N AN
Xiz Ju(_'+_1), i=1,.,2N,
j;} dz’  or

X+, {31)

whereh = — ¥,y , and 7 = 22"+ ', Note that if 7 = ¢, then
h = H. Finally, the equations of motion in the coordinates z*
are

dz'

= —x
dr

i=1,.,2N. (32)

The relation between ¥, o, the eigenvector field X, and
the equations of motion has precisely the behavior under
mappings that we expect and require for perturbation the-
ory. To see this, let us characterize a null eigenvector X of
at a point zeE as the nonzero vector which satisfies
o(Y,X) = 0for all YETE,. Let us now apply a diffeomor-
phism T:E—E, according to the rules @ = T* ~ o,

X= T X, Y = T, Y, asindicated already by Egs. (2) and (4).
Then we have
aX.Y)=aT,XT,Y)=(T* d\X,Y)=0(X,Y)=0,
(33)
which holds for all }7GEE, where Z = Tz, since we assume
that T:E—E is a diffeomorphism. Thus, X is the null eigen-
vector of &.

The upshot of this is that if we simply transform points
by the mapping T and the 2-form @ by T* ~ !, then the null
eigenvector of the new @ will automatically give the trans-
formed equations of motion. Thus, we can concentrate our
attention, as far as perturbation theory is concerned, on the
2-form w, and not worry about the equations of motion.

Actually, it suffices to transform only the fundamental
1-form ¥, since the pullback commutes with the exterior de-
rivative. It is important to note that y is subject to a “‘gauge
transformation,” i.e., we can write ' = y + dS, for any sca-
lar S, and ' serves equally as well as ¥ for finding w, the null
eigenvector X, and the equations of motion.

5. HAMILTONIAN PERTURBATION THEORY IN
NONCANONICAL COORDINATES

We consider for a moment only time-independent sys-
tems. It is a simple observation of Hamiltonian mechanics in
usual {g,p) language that the Hamiltonian H is determined
only to within an additive constant. This is evidently a gauge
transformation of a simple kind; although the equations of
motion are determined only by the 1-form dH, it is more
convenient in practice to work with the O-form H. Indeed,
the Hamiltonian itself transforms as a scalar under (time-
independent) changes of coordinates. Traditionally, one
works with canonical transformations, which can be charac-
terized as those transformations (g,p)—(g,p) which satisfy
p;dq; = p,dg; + dS, for some scalar S.

The discussion of the preceding sections provides an-
other point of view. The Hamiltonian H is now seen to be the
t component of the 1-form y = p,dg, — H dt; the fact that it
appears to transform as a scalar is due to the restricted class
of transformations previously considered, namely time-in-
dependent canonical transformations. Most generally, H
should transform as one component of a covariant vector.
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The traditional strategy of Hamiltonian perturbation
theory in canonical coordinates can now be seen in another
light. In the traditional strategy, one seeks mappings (or co-
ordinate transformations) such that the first 2N components
of ¥ remain inviolate, i.e., the p;dgq, part, while the last com-
ponent, i.e., the term — H df, is modified according to will.
Of course, one allows for a gauge transformation,

y—y + dS, in this process.

An obvious generalization of this process is to trans-
form all 2N + 1 components of ¥, and not to pick on the
Hamiltonian alone. Of course, this must be done with regard
to some final form which one wishes ¥ to assume; that final
form might well be p.dg, — H dt in which, say, H is a func-
tion only of the p,, or it could be something else. But even in
the former case, one is not compelled to use either canonical
coordinates or canonical transformations in the intermedi-
ate steps. Indeed, if a problem is originally formulated in
noncanonical coordinates, then by definition the first 2N
components of ¢ will not be represented by p,dg,. Thus,
transforming the Hamiltonian to the desired form and find-
ing appropriate canonical variables can be considered to be
part of the same process, that of transforming y.

Let us now take up the transformation properties of y.
Quite generally, we will transform y by the rule

y=T*"'y+dS, (34)

where T'E—E, Tz = z, is a diffeomorphism of the extended

phase space onto itself. In components, this is

- d7 as

vilE)=—vrl+—— (35)

7 19T 5

in accordance with the usual rule for covariant vectors.
These laws are good for any transformation 7. But asin

Sec. 2, let us consider mappings which are composed of ad-

vance maps derived from a set of vector fields G,, G,, etc.

Through second order, we have

T* ' =.. exp(— €L,Jexp( —€L,)
=1—€L,+ €L} — L)+ . (36)

The transformation of the coordinates themselves, shown in
Eq. (6), involves T*, which can be obtained from 7* ~ ' by
substituting — L, for L, everywhere in Eq. (36), and revers-
ing the order of all Lie derivative operators.

Let us now assume that f, ¥, and S in Eq. (34} are all
expanded in powers of €, i.e., ¥ = €'y, v = 2"y,
S = 2¢"S,. Then substituting Eq. (36) and collecting terms
gives

?70=7’0+dso’
Yi=7— Ly, +ds,,
Ya=v—Ly + (4 L} — Loy, +dS,, (37)

and so forth. These equations are to be solved order by order
for the vector fields G, implicitly contained in the L,, and
the scalars S,, so that the ¥, have the new form desired in a
given application. Similar formulas arise in traditional Ha-
miltonian perturbation theory, except that there the Lie de-
rivative operators act on the O-form H instead of the 1-form
¥.
Equation (11) gives the definition of the Lie derivative
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on an arbitrary differential form. However, for a practical
application of Eq. (37), there is considerable advantage in
calling on the homotopy formula

Lya =i,da + diye, (38)

where X is an arbitrary vector field [represented in Eq. (37)
by the G, ], where i, is the interior product and where & is an
arbitrary differential form. The interior derivative is defined
as follows. If B is a k-form, then i, /3 is a (k — 1)-form which
satisfies

(ixﬂ)(Xlr-»Xk-1)ZB(X»Xl’---»Xk_l}y {39)

where X,,...,. X, _ | are arbitrary vectors. The advantage in
using Eq. (38) is that the second term is an exact differential
form, which can be absorbed into the terms dS, in Eq. (37),
and the first term of Eq. (38) is easier to compute in practice
than the entire expression. In addition, note that the first
term of Eq. (38) involves the vector field X only algebraically,
while the second involves its derivatives. We have found in
practice that the second term of Eq. (38) often contains gauge
dependent quantities that one is not interested in, anyway.

Thus we can reinterpret Eq. {37) in the following way,
with no loss of generality. The operators L, are no longer the
Lie derivatives L; , but rather i; d; and the scalars S, are
redefined so as to absorb all the exact forms produced by the
second term of Eq. (38). Then with « representing any of the
1-forms which arise in Eqgs. (37), we have the component
relation

da; da;
i ) (40)

(L,.a).-=G’,}< - — —
azl odz

The entire labor of the perturbation calculation reduces to
computing terms of this form, just as it reduces to computing
Poisson brackets in ordinary Hamiltonian perturbation
theory.

The terms L, 7,1in Eq. (37) are used to solve algebraical-
ly for the vectors G, , and the terms dS,, represent differential
equations for the scalars S,. The system is generally under-
determined, as may be expected from the nature of the end
product. For example, if one ends with
v = p,dq, — H (p,) dt, then this result can be subjected to an
arbitrary canonical transformation of the form p; = p,{p),
g, = §,(¢,p) (a point transformation in the momenta). Some-
times gauge invariance or other considerations enter to re-
strict the possibilities.

We have applied this perturbation theory to analyze the
resonance structure of magnetic field lines in physical sys-
tems which are nearly axisymetric. This is an example of a
Hamiltonian system for which canonical coordinates are not
given in the problem specification, and must be found. We
will report on this and other applications in future papers.
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Electromagnetic muitipole propagation in a homogeneous conducting

‘wholespace
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The electric and magnetic field components are expanded in terms of spin weighted spherical
harmonics, thereby defining a multipole structure whose propagation through a homogeneous
conducting wholespace is obtained. For current sources contained inside the unit sphere, the
resultant exterior electromagnetic fields are uniquely associated with either currents from
electrodes placed inside the unit sphere, or from insulated wires inside the unit sphere. The
former fields have transverse magnetic fields, while the latter (with the exception of the magnetic
monopole) have transverse electric fields. When displacement currents are ignored, the fields
from step function current sources are described by the incomplete gamma functions, while the
exact solutions containing the hyperbolic contributions are obtained from convolutions with
integer order modified Bessel functions and functions dependent on the temporal behavior of the

current source.

PACS numbers: 03.50.De

1. INTRODUCTION

The number of exact solutions to the idealized problems
of geophysical prospecting is very small. In order to over-
come mathematical difficulties posed by Maxwell’s equa-
tions, many attempts to construct relevant solutions assume
the quasistatic approximation, or equivalently; contribu-
tions from the hyperbolic wave terms are ignored. Even
then, the number of known quasistatic solutions is small.
Subject to the quasistatic approximation, solutions in the
form of known tabulated functions have been given for finite
electric and magnetic dipoles excited by step function cur-
rent sources in a homogeneous conducting wholespace. To
the author’s knowledge these are the only published whole-
space solutions excited by step function current sources. The
aim of this paper is to present the general multipole solution
to Maxwell’s equations in a homogeneous conducting who-
lespace, where current sources are contained inside the unit
sphere and where the sources have a step function time
behavior.

Our study of Maxwell fields in a homogeneous conduct-
ing wholespace begins by utilizing the spin harmonics.! We
have chosen to employ the nonrelativistically invariant elec-
tric and magnetic fields, since the presence of a nonzero con-
ductor disturbs the elegance of Maxwell’s equations. This
can be seen by comparing the equations of this paper [see
Eqs. (2.12)<2.15)] with those of Goldberg et al.,? but this is
not considered a disadvantage since in terrestrial experi-
ments, for example, we often have effectively a unique time
coordinate, and so there is no need to apply Lorentz trans-
formations to the field.

In Sec. 2 the spin harmonics are defined, and then we
introduce a spin base and derive a simple form of Maxwell’s
equations in a uniform conductor. These equations are
solved in Sec. 3 for steady state fields. In Sec. 4 we consider a
set of particular solutions whose magnetic field is transverse,
while Sec. 5 considers fields with transverse electric fields.
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Section 6 contains the conclusion. We use SI units through-
out this paper, and our summation convention (e.g., £, )
means summation over all possible values (of / and m). Only
integral spin fields are considered.

This paper is an extension of an unpublished research
report,” which determined the quasistatic approximations to
the solutions of Sec. 4. We shall only consider fields which
are bounded at spatial infinity, and are produced by step
function current sources.

2. SPIN HARMONICS

In this section we shall collect results which will be
needed later.

In aspherical polar coordinate system (r, 6, ¢ ), the com-
ponents X,, X, + iX,, X, — iX, havespin weight*0, 1, — 1,
respectively, where X = X, & is a one-form.> The spin har-
monics . Y, ,

. 2n+s—m
Y, = e""*”sinz’( g )zas,m,, (cot % ) N ,

aslmn = ( - 1)[7'1 7SC£,—SC£1-:Xs7 m
( (I + ml — m)(20 + 1) );
(I + s\l — 5)l4mr ’

7xYIm =(_ 1)x+mszIm’

Is|<l, |m|<l; mys,l integers,

provide a complete orthonormal set of functions for regular
integral spin fields on the unit sphere, and can be used, for
example, as a basis for regular electric fields,

E,=E, = Z Kim (18 )oY 1 (6,0 ), (2.1)
E. =E,+iE, = zlxlm(rvt)lylm(9’¢ )s (2.2)
E =E,—iE,=E,, (2.3)

where Y, are the ordinary spherical harmonics and
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ofim 1K1 are fixed uniquely through Egs. {2.1) and (2.2). For
a spin field y of spin weight s, the differential operators d and
3 are defined as

dy = — (dg + icschd, — scotf )y, 2.4)
3y = — (dg — icscdd, + scotf Jy, (2.5)
8, =2,
ax
and satisfy
3,Y,, =W —s+s+ 1Y, Yy (2.6)
0, Yo = — (U +5l =5+ 14, Vi, 27

where |s|</and |m|</.

In a homogeneous wholespace of conductivity o, Max-
well’s equations can be expressed as four linear first-order
complex equations among the two real (E,, B,) and two com-
plex (E , ,B , ) field variables. This is illustrated by the fol-
lowing sequence:

dB, = — d4B, — icscdd, B,

=HVXB), —0,(rBy) — i(r(VXB)y + d,(rB,))
= ruok, + ued E;) — iruokE, + ued, E,)
~3,1By + iB,),

and so
GB():: —I'r(‘u,O'EJr +,u€arE+ ]_a’rB“’ ’ (28)
3E,=ird,B, — 3,1k, , (2.9)

OrB . =3d,(rB,) — ir(uoE, + ued,E,), (2.10)

3rE , = 3,(rE,) + ir'd,B,, (2.11)
where the derivation of Egs. (2.9)-(2.11) follows that for Eq.
(2.8). It is straightforward to show that Maxwell’s equations
in a uniform conductor are equivalent to Egs. (2.8)—(2.11);
andsince £ _ and B _ do not appear in these equations, it is
sufficient to consider only Eg, E |, , By, B, when describing
electric and magnetic fields.

The second-order equations following from Eqs. (2.8)-
(2.11) are

IOE, + PrE, = por'd, E, + uer’dE,, (2.12)

30E, +rd*rE, =20E,+ rucd,E, + ruedE
(2.13)

30B, + 8*r*B, = por’d, B, + per*d*B,, (2.14)

33B, +3,°3,B, =28B,+uor'd,B, +uerdB, .

(2.15)

3. STEADY STATE FIELDS

In order to provide a simple example of the application
of spin weighted spherical harmonics, as well as to obtain
results which are needed later, we shall discuss those steady
state fields which are regular outside the unit sphere. A
steady state electric field in a homogeneous conducting me-
dium satisfies VX E =0 = V-E, and so

E = Ve, (3.1)
where V?e = 0. Then Egs. (3.1) and (2.4) allow us to write
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E= (Eo’ E+)
={d,e, (0, + icschd,)(e/T})
= (d,e, 8le/1)), (3.2)
and provided that e is regular on the unit sphere,
€= Eelm (Mo ¥ im (6,8 ), (3.3)

where e, (#) are functions of the radial coordinate 7. From
Egs. (3.2), (3.3), and (2.6),

E= E[(arelm JoYims — €1+ D)4 Y, /7] (3.4)

and from Egs. (2.8)-(2.11), Maxwell’s equations are satisfied
providing 8E, = — d,(rE_)and 3(rE ) = d,{rE,), or
equivalently

arrzarelm = l(l+ l)e,m,

which implies {as it must, of course) that

E=Ya,r [+ Y, l(+ )Y, ] (3.5

where a,,, are constants, and only terms which are bounded
at spatial infinity have been retained.

It remains to solve for the magnetic field components.
These cannot be unique (unless the required boundary condi-
tions are given), since the magnetic field in uniform conduc-
tors is defined by the electric field to within the gradient of a
harmonic function. Since the analytic form of such regular
functions is given explicitly in Eq. (3.5), it only remains to
observe that the particular solution

B = (0, — iuoagcot(8 /2)/,4rr
+ Y U>0)[0duoa,, r~ '~ W+ /1) Y, ] (3.6

is satisfied by Eqgs. (2.8)~(2.11), subject to Eq. {3.5), where
2(I> 0) means summation of / from one to positive infinity,
and m from — / to l. The expression cot((@ /2)/r) has been
called a singular spin harmonic® and results presumably
from the presence of a “conduction path” along which
charge has passed to the coordinate origin. Clearly, the gen-
eral asymptotically regular, steady state magnetic field is
found by replacing a,,, in Eq. (3.5} by arbitrary constants,
b, say, and adding the result to Eq. (3.6). Strictly, the term
resulting from o, in Eq. (3.6) is not regular at spatial infinity
(for 8 = 0), but nevertheless, we shall retain it in what
follows.

4. TRANSIENT TRANSVERSE MAGNETIC FIELDS

In this section we shall investigate the transient devel-
opment of electromagnetic fields which result from a step
function current source, and which tend with time to the
steady state fields in Eqgs. (3.5) and (3.6). Initially we shall
only seek a particular solution to this problem, deferring the
homogeneous solutions to the next section. First, note that
the following canonical form for the magnetic field,
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— poaga,(rt Jeot(8 /2)

(4mr)'/?
12 almaf(r:t )] Ylm

+ 2> O)fp,O'(I _+1_ ! ) 7

will supply the required particular solution, provided we can
solve Eq. (4.2),

(@ +r='9, — (I +4Pr 2 — pod, — ueda, = 0, 4.2)
subject to the following initial and boundary conditions,

Bo =0,
B

+

, (4.1)

lim[F'* " 2a,rt)]=1, t>0 (4.3)
r -0

a=0=4da, t=0 (4.4)
(lim a,) is bounded, (4.5)

where Eq. (4.2) follows from Eqgs. (4.1} and (2.15); and Eq.
(4.3) states that the steady state magnetic field is established
at the origin for all positive times. We have used only / as a
subscript for a,, since «, is obviously independent of m.
Introducing the Laplace transform of ,, 8a;,

La, = j e “a,dt,
0

allows Eqs. {4.2) and (4.4) to be rewritten as
@2 +r='9, —r %l +1)* — pos — pes?)a, =0,
or
{4.6)
(4.7)

where I and K are modified (spherical) Bessel functions and
¢, and ¢, are independent of . From Egs. (4.5) and (4.6},
¢, = 0, while from Egs. (4.6) and (4.3),

Qal =p,+VIKH,‘/z(p)/Sr(I—*-%)21*1/2?’+V1. (48)

The inverse Laplace transform of Eq. (4.8) can be performed
by deforming the contour integral into an anticlockwise loop

La; =c 0, )+ K 1 0)
p = (uos + ues™)''?r,

around the segment of the real axis betweens = — o/€ and
5 == 0. There is a pole at s = 0, and a branch cut between
s=0ands = — g/e, since the multivalueness of p' * '/* can

be absorbed into X, , |, (p). A straightforward calculation
yields

ove ,—utl+ 172
a, =r i+ 1/2;[1 ~J' e 'q -[,itxgz(q}i’: ],(4'9)
o wl(I+ 42+

q = (uou — peu*)'"?,

where J; , , is an ordinary Bessel function of order / + }.
The corresponding expressions for the electric fields
can be obtained directly. From Eqgs. (2.10), (4.1), and (4.8),

7+ 1)‘1‘1»,]7H I/2K1+ 12 @)oY im

L, = , 4.10
=2 s(1 + es/a)C (I +4)F +2 4.10
while from Egs. (2.8), (4.1), and (4.8), and setting /> 0,
1/2 I+ 172
E, = Z(l>0 a,, (I + 1/1)'* Y, p
s(1 + es/oM {1 + 42!~ 172/ +2
X[PKi300) — 1+ DK, 1, 0)], (4.11)
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where 8E,, 8E , are the Laplace transforms of E,, £, , and
S0

Ey= Z[alm(1+ 1Y, (1 —e~ ")

_ (1 + 1) Y,
/+2F(1+%)2[+1/2

Xfa/c e—utql+ l/211+]/2(q)du]
0 u(l —eu/o) ’

(4.12)
while for /> 0,
E. = S5 0@ 00+ 1) ¥ =121 =170

apm (il + 1)/1)'* Y, J"’/‘ e
D+ 122+ 4 u(l —eu/o)

X[+ inle)—q 2y, 3/z(q)]du]'

(4.13)
It is possible to rewrite the solutions for B ,, E,, and

E _, given in Eqgs. (4.1}, (4.9), (4.12), (4.13), by utilizing the
following relationship:

(defn) gl + D 21+ 197{1[11+1(a([2 _ k2)l/2)

‘T (21 — 12 — k2t 12 1K
=8—l( p[+l/2Kl+ l/z(p} )’ (4'14)
217 1/21-‘(1_+_ 12)
where € ~ ' is the inverse Laplace transform, and
a=o/2¢, k=Vyuer. (4.15)

Equation (4.14) can be proved by induction by first observing
that the / = O case is given in tables of inverse Laplace trans-
forms’, and finally, that the operator k' *'g, k —?/+ 1
maps the result for / into the corresponding result for / + 1.
We can now write the fields B, E,, E_ as a convolution of
@, with given functions of time; for example, from Eqs.

{4.14) and (4.10),
I+ Ve, oYm

E0=Z( ree

a,, (! + 1Y, *
_ il A Tho ¥ ,2)0 ! J ¢,(:—f)(1—e-°”f)dr),

r}
(4.16)

where we have written the solution in a form which avoids
the light cone where k = ¢.

When displacement currents are ignored, or equiv-
alently, € is set to zero, the fields above take simple forms. By
setting € to zero in the expression for «; in Eq. (4.9), we find
that

d+172) = p' 2Pt /ne

— i+

a =r —j m-’um(’?)‘ip
=r(l+£y§2)/’}+1/zr(l+£)’

Er=por/a),

I'az = f e “u™"du,
where we have utilized a well known Bessel transform.®
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Consequently, in the quasistatic approximation (€ = 0),
B,=0,
ipoayI (3, & *)cot(6 /2)

B,— — %
Jarrl (3)
+ Z(I>O)(1+ l)l/zl;uaalmr(l_‘_ LEY,,
! P+
gy g D 4 €3y,
e+ 1)
E,=0 forl=0,
1/2
= S50 (14 1) allm 12Y1m
i+ 4y

X[l"(l+§,§2) + %gz’“e*?’ (/>0).

By integrating repeatedly by parts, it can be shown that

2 o1 Y
.CLI_i%’g_) =erfc§+ Le*g‘ _2;_’
ri+1) v o2+ 1

where the summation term on the right is zero for / = 0.

This completes our derivation of the transverse magnet-
ic fields. Since these fields have nonzero steady state electric
fields, it is natural to associate them with electrodes placed
inside the unit sphere. Finally, the lowest order physically
interesting solution is that of the infinitesimal electric dipole
which follows by setting

a,, =161 120(2m)"?,

where 8/ is the “length” of the dipole. For this case, the
solutions above are well known.® The only difference be-
tween our dipole results and those presented earlier are in @,
in Eq. (4.14), where we have dropped the wave front delta
functions, and the singular derivatives of the wave front del-
ta functions, which were included in the earlier
derivations.'®

5. TRANSIENT TRANSVERSE ELECTRIC FIELDS

We shall begin this section by discussing the general
transient electromagnetic fields which are bounded at spatial
infinity, and which are established by a step function cur-
rent. Such fields must tend with time to steady state solu-
tions, and as we have found a particular set of fields which
tend with time to the steady solutions in Egs. (3.5} and (3.6),
any additional fields must tend to the “complimentary”
steady state fields mentioned in Sec. 3,

B, = zblmrﬂ R+ )oY,

B, = zblm”_liz(l(l*‘ )Y,

E,=0=E,.

These fields are found by writing

By =r"23b,,Birt {l + 1Y, (5.1)
B, =r= "3 b, vt (I + 1) Y, (5.2)
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and solving Eqgs. (2.14) and (2.15),
(@ +r ', —r (I + 1) —pod, — ued?)3, =0,
(0 + 13, — r Al + 1) — pod, — uedily,
=2r= (1 + 1),

to the initial and boundary conditions

ﬁl =0= Y1 = O,
arﬁl =O=ai7/1» t=0,
lim(* 18,) = 1 = lim(? %), £>0,

limf3,, lim ¥, bounded.

Taking Laplace transforms, and using our earlier nota-
tion, the general solution to the above equations is

_ p[+1/2K1+]/2(p)

2 %)sr” 1/2°
0, =0, (5.4)
P 3/2K,+3/2(p) —(+ l)p"" 1/2K,+ 2P

121—7 1/2r(1 + %)Srl + 372
+ P(s)K, , 1,2 (p), (5.5)
where P {s) is an arbitrary function of s. Reference to the pre-

vious section shows that P (s) generates the transverse mag-
netic fields found earlier, so we shall set P {s) to zero,

B, (5.3)

Ry, =

P(s)=0. (5.6}
Then, from Eqgs. (2.10), (2.8), and (5.1)—(5.6),
E'boooYoo 3 :
RE, = \/ : [p*°Ks(p) —er;(p)],

(o + pesis (4)r
_ (141 \
QE, = z(1>0)z( —= )

blm.”[+ 2K, c120h Yo

r1+121—l/2r(1+1) (57)
and so from Eq. (4.14),
] 1 \12b,,9,,Y,,
E, = _z(1>0)z(”; ) ’r,i"’ . (5.8)

Consequently, with the exception of the magnetic monopole
(bgo) term, the electric field is transverse and can be found in
closed form. The latter fact is suggested by the work of
Wait,'' who has derived the explicit form (modulo wave
front delta function terms) of @,.

From the results in Sec. 4, the solutions for B, B, and
E, may be written down using the Green’s function solution
based on @, in Eq. (4.14), or using the half-integer order
(spherical) ordinary Bessel functions; for example,

BO - 2 (l+ lr)blrnOY[m

12
% [1 _ JW“ e “g't Vs lg)du
0 ul ([ + 12+ 172
We shall not pursue this further, however, but instead shall
present the quasistatic solutions which follow by setting € to
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zero. Fore =0,
blm (l + l)OYImF(l + %’g 2)

B, = , 5.9
0 z I‘I+2F(l+%) ( )
(L + 1)y, Y,
B. =S(I>0
x([‘(l+%,§2)+ %g”*‘e*g‘), (5.10)
boiyYo,e ¢
E,= % (5.11)
) l+1)]/2]Ylm§21+le§3
E. = —S(>0)ib
L= = 3>, (2 T
(5.12)

By construction, the steady state electric fields in this
section have all been zero, and so it is natural to associate the
fields in this section as arising from insulated current carry-
ing wires. The lowest order, physically interesting, example
is that of the infinitesimal magnetic dipole, which follows by
setting

by = pldA /2(2m)'"?,

I 66

where dA is the dipole’s “‘area”. For this case, the solutions
above agree with earlier results.'”

6. CONCLUSION

We have constructed all Maxwell fields in a homogen-
eous wholespace which are established by a step function
current source, and are regular outside of the unit sphere.
With the exception of the (nonphysical) magnetic monopole,
fields from insulated wires inside the unit sphere produce
transverse electric fields, while fields from electrodes inside
the unit sphere produce transverse magnetic fields. Such a
decomposition into transverse electric, and magnetic, fields
is unique, and as a current source with an arbitrary time
dependence can be constructed from step function current
sources, this decomposition is also quite general.

When displacement currents are ignored, the fields
from step function current sources are described by the in-
complete gamma functions, while the exact solutions con-
taining the hyperbolic contributions are obtained from con-
volutions with integer order modified Bessel functions and
functions dependent on the temporal behavior of the current

source.
The spin weighted spherical harmonics played a central

role in our solution technique. Similar approaches appear in
the book by Gel’fand, Minlos, and Shapiro,'* and in the pa-
per by Goldberg et al.'* These works considered empty space
Maxwell solutions, and showed that in a spherical polar co-
ordinate system, the angular dependence of such fields could
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be completely separated by using field components which
were irreducible under the action of the three dimensional
rotation group. Gel’fand et a/. utilized the vector potential,
whereas Goldberg ef al. used the three components of the
Maxwell spinor.'® Both approaches, as well as a Hertz vector
approach, could be used in the presence of finite conductiv-
ity, but the resulting equations contain, either implicitly or
explicitly, components with spin weight negative one, since
the natural gauge condition (V-4 = poy + ued, ) reads

ar(ron) - Re(rgA )= rz(;tatjj + ped, ),

where (4,, A, ) is the vector potential, ¢ the scalar potential,
and Re denotes the real part of an expression. In order to
avoid such reality conditions the physical field components
(Ey E,)and (B, B ) were used. (However, any such choice
is simply a matter of personal preference, and each option
has probably some merit.)

Finally, the only solutions known to the author which
are directly analogous to those derived in this paper are the
infinitesimal electric and magnetic dipoles, both of which are
well known. The solutions for the higher multipoles appears
to be new, and as an arbitrary bounded current source can be
expanded in a multipole expansion, our expressions above
can be used, for example, to estimate how closely a given
source field is approximated by dipole fields.
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It is shown, following a criterion borrowed from Khas’minskii, that the stochastic process
associated with the (approximate) Fokker—Planck equation of the hydrogen atom problem in
stochastic electrodynamics (SED) is nonrecurrent and therefore also nonergodic. The
demonstration of this nonrecurrence property does not use any explicit solution. The property
implies, among other things, that all the invariant measures of the process will be nonfinite.
Some remarks concerning the consequences for SED are made.

PACS numbers: 03.50.Kk, 41.70. + t, 02.50.Ey

I. INTRODUCTION

Stochastic electrodynamics (SED) is classical electrody-
namics (including Lorentz-Dirac radiation damping) sup-
plemented by the assumption that there exists a stochastic
electromagnetic field filling up the whole space. From var-
ious arguments (e.g., retrieving the ground state energy of
the quantal harmonic oscillator,' or requiring relativistic in-
variance for the spectrum?; it may be found that this back-
ground field must have zero mean value and a spectral
density '

5. () =32—’le|3, (1)
C

i.e., we recognize the properties of the vacuum state of quan-
tum electrodynamics.

The theory constitutes a well-defined problem of math-
ematical physics, but its solution is rather difficult, due to the
nonwhite character of the random background field, and the
nonstandard techniques required for the treatment of non-
linear systems have been worked out only recently [Refs. 6-9
and references therein].

For a single nonrelativistic charged particle the equation of
motion in SED is the Braffort-Marshall equation. %!

mi = F(r}) + m7¥ + eE(z), 2)

where m is the mass of the particle, e its charge and

7 = 2¢°/3mc; F(r) is the external (known) force and E(r ) the
electric field due to the background radiation. This last term
is written in the electric-dipole approximation, which ne-
glects the magnetic force of the background field and the
spatial dependence of the electric field. Starting with (2) and
using a stochastic Liouville equation, a generalized Fokker—
Planck equation (FPE) (of a rather complicated form) for the
distribution in phase space may be derived'>'?; the process
obtained turns out to be definitely non Markoffian in phase
space. The fact that the damping and stochastic force are
small with respect to the *“deterministic” Hamiltonian®
makes it possible to use perturbation methods and find sever-

“IResearch fellow from the UNAM (Universidad Nacional Autonoma de
Mexico).
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al approximations of the usual type (second-order partial)
derivatives to the generalized FPE.>® The lack of uniqueness
of such equations is due to the non-Markoffian character
mentioned above. These equations may be reduced to a
unique FPE in terms of a smaller number of variables name-
ly some relevant constants of notion corresponding to the
unperturbed deterministic motion®* (for the case of multi-
periodic systems, such relevant constants of motion are the
action variables).

This reduced FPE can also be obtained directly by cal-
culating, through perturbation methods, the variations of
these constants of motion under the effect of the damping
and stochastic force and by averaging these variations to get
the drift and diffusion coefficients.*®

In the case of linear system, although the predictions of
this FPE are not fully identical with those of quantum the-
ory, they are rather satisfactory.'*>'* However, in the case
of nonlinear systems, such as the anharmonic oscillator and
the Kepler problem (Coulomb potential) the results obtained
until now, from the reduced FPE are not in agreement with
quantum theory.*'*

‘We show in this paper, using a criterion borrowed from
Khas’minskii,'” that the process associated with the Kepler
problem FPE is nonrecurrent and therefore nonergodic. We
examine the implications of this nonrecurrence property and
its possible origins.

. THE KEPLER SYSTEM

In the Kepler problem®’ we have the Coulomb
potential

Vir)= —«/r, (3)

K being a positive constant. The suitable variables for writing
the reduced Fokker—Planck equation are the energy of the
particle E, its total angular momentum M and the eccentric-
ity € given by

€= (1 4+ 2EM?*/mx*)"2. (4)

or the variable 7 = (1 — €%)'/2. We restrict our attention to
bound states, thus £ < 0. In this case the reduced FPE is®®
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] aw
i CMM — |, 5
+ aM[ oM ®)
where
T = 2mk(m/|2E |?)"/? (6)
denotes the orbital period. The coefficients are
C* = 16m"rmi*( E /M? + ime*/M ¥, (7a)
M — 16 rmk(1/M), (7b)
C 28 = 16’ THAM (|2E |*/mx*)g5(e), (7¢)
CMM = 167°TAM |2E | ¢ (€), (7d)
CME = CEM = 16m37AM (|2E |¥%/(mi?)))d,le), (Te)

where the functions ¢, (€) may be expressed as series in terms
of Bessel functions J, (so-called Kapteyn series)®™® (a thor-
ough study of these functions ¢,, including the derivation of
their asymptotic behavior near 7 = 0, may be found in Ref.
16):

¢,<e)=-;— S setn’| L1, ne) + 7 (ne T

and sg (n) denotes the sign of n.
The domain of definition of Eq. (5) is

— o0 < E<O0,
0<M<[mi*/|E (]2 (5a)

It is worth noting that, in this so-called “current” form,
Eq. (5), of the FPE [see Eqgs. (9)-{11) below], the drift coeffi-
cients depend only on the damping Lorentz force and the
diffusion coefficients only on the stochastic force (see Ref. 6
for example). This property holds for any stochastic force
which depends on time only (but not on the phase space
point),® or, more generally'” for any stochastic force with
zero divergence (with respect to phase space variables).

The problem is to solve the FPE in the stationary case.
The stationary FPE can be written as

div(w,C + C gradW,) = 0, (%)
where

_ CE — CEE CEM

C= (CM) and C= (CME . (10)
and

J = W,C + C grad W, (11)

is called the probability current. _

From Egs. {7a) and (7b) we easily find div C = 0 and
then we always have the trivial constant solution
W, = const.'® To the authors’ knowledge no other exact so-

: . : 9,17
lution has been obtained; however, Claverie and Pesquera
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have been looking for solutions under the form
W = Cst exp( — ¢ ), where ¢ is expressed as a series expan-
sion. We remark that the constant solution does not satisfy
the “zero flux” boundary conditions, i.e., J'n = 0 which
seems natural for a good solution.®

The difficulty in finding an exact nontrivial solution
{which could be compared with the experiment and with
quantum theoretical results) is at the origin of the present
work. In actual fact, as we are going to see below, we do not
need to know any solution of the stationary FPE, in order to
prove the nonrecurrence of the associated process (and all its
consequences). In order to get some idea about the behavior
of another solution (supposing that it exists), different from
the trivial one, we can proceed as follows:

We modify slightly the coefficients given by Eq. (7) in
such a way as to satisfy the so-called detailed balance condi-
tion (DBC), i.e., the vanishing of the probability current®

W,C + Cgrad W, =0, (12)

where ¢ Cand C are given by (10). Equation (12) gives
C+C grad Log W, = 0, hence provided C ~' exists (which
is the case, except on some boundaries of our domain), the
DBC explicitly reads:®

C ~' Cmust be a gradient field (grad Log W,).
One among the possible modifications is then®

mod 11 mod 1 1+€72

$\"(e) = 27 and  ¢,"*(¢) 2 7 (13)
whatever ¢,(€) may be. These modified functions coincide
with ¢,(€) and ¢,(€) respectively up to order €’ near 0 and
diverge as 7—0 with the same power of 77; thus the exact
problem satisfies the DBC along the boundary € = 0 and the
exact DB solution of the modified problem could provide an
approximation to some stationary solution of it.

The exact DB stationary solution of the modified prob-
lem is®

W 3oM) = const e ~*M/* (14)

and, on the other hand, since the drift coefficients are the
same as for the exact problem, we still have the solution
W 3 = const.

Both solutions, the constant and the approximate one,
unavoidably lead to a divergent integral for the complete
probability density W,M */5*. The volume element in the
“reduced” phase space is M 2/5*> dM dx. It is due to the
reduction from the complete six-dimensional phase space
(q,p), with volume element dq dp, to the space (M,7) (see Refs.
6-8). In other words, W, corresponds to a electron diffusion
toward infinity (self-ionization process), in clear contradic-
tion with experiment and with quantum theory. (See the end
of the previous section.)

ill. KHAS’MINSKII'S CRITERION1S

Let X (¢ ) be a diffusion process on a o-compact complete
metric space (E,p) with Markov transition P (¢,x,4 ), >0, xed
and A€B where B is the o-algebra of the measurable sets
generated by the open sets in the space (E,p).'

The definition of a recurrent diffusion process is the
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following:
Definition: If there exists a compactum K such that for
all points xeE,

P {thereisa?such thatx,ekK} =1, (15)

the process is called recurrent.

In other words: for every point x€E, every trajectory
starting from x will cross the compactum K with probability
1.

It is easy to show that the trajectory of a recurrent diffu-
sion process is everywhere dense in E with probability 1,
then it is always ergodic.

We recall the following important properties proved by
Khas’minskii'® for general multidimensional processes:

(1) If a process is recurrent, it has a unique invariant
measure, which may be finite (its integral is finite} or infinite.

(2) If a process has a finite invariant measure, then it is
recurrent (and consequently this invariant measure is
unique).

Thus, if a process is nonrecurrent, it cannot havea finite
invariant measure; only infinite invariant measure (s) is (are)
possible. From the physical point of view, a bound state obvi-
ously corresponds to the existence of a finite invariant mea-
sure, i.e., to a recurrent process {in S.E.D, examples of this
situation are provided by the harmonic oscillator and the
rigid rotator'*). Conversely, a nonrecurrent process, hav-
ing no finite invariant measure, may describe only an *“un-
bound state.”” The importance of the distinction between re-
current and nonrecurrent processes is therefore quite clear
from the physical point of view. Now, Khas’minskii'® pro-
vides several sufficient criteria ensuring either recurrence or
nonrecurrence of a process, based upon the knowledge of the
drift and diffusion coefficients of the process. We proceed to
the description of the one among these criteria that we used
in the present work.

From the theory of Markov process it is well known
that in the case of diffusion process in a domain £ of N-
dimensional Euclidean space R” the Dynkin infinitesimal
operator has the form“"z'

Lu= EaUa ax

fj=1

N Jdu

+ 3, . (16)

i=1
for twice differentiable functions.

We now assume that the operator (16) is given in all
Euclidean space R", and, moreover, that the coefficients a;
and b; are sufficiently smooth (for example, that a continu-
ous third derivative exists for all the coefficients), and

2 a;A;A; >0 everywhere in RV if > A7>0.

=1 i=1
Under these assumptions, and defining

Bii(x;) =

E(xi) = SUP by (X1, X259, )/ @ (%1% 250Xy )s

Inf 8, (X1 Xn )/ @ (X [ Xy Xy ), {17a}

(17b)

where the infimum (supremum) is taken over all the coordi-
nates except the ith, it is possible to derive the Khas’minskii
criterion (see Ref. 15, supplement, Theorem II, p. 194).

Khas’minskir’s criterion: In order that a diffusion pro-
cess be nonrecurrent, it is sufficient that for some i, 1<i<N,
one of the following two inequalities be satisfied:
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J:c exp[ — lei,.(y) dy] dx < + o, (18a)

o o

f() exp{f 0E(y)dy]dx< + o0,

whatever x, may be.

This criterion (and others also given by Khas’minskii'?)
may be considered as generalizations to the multidimen-
tional case of well-known criteria corresponding to the case
of one-dimensional diffusion processes.”> A more abstract
treatment for multidimensional processes based upon the
martingale approach, may be found in the recent book by
Strook and Varadhan.”

(18b)

IV. THE STANDARD FORM OF THE FPE

In order to apply the Khas’minskii criterion to the
Kepler problem, we have to put its FPE under a form which
satisfies the criterion assumptions; i.e., the equation must be
defined in the whole corresponding Euclidean space (R” in
this case) and it must be in the forward form which corre-
sponds to the Dynkin infinitesimal operator [Eq. (16)]. [The
continuity condition on the third derivates of the coefficients
is satisfied for € in the interval (0,1)]. We perform this trans-
formation in several steps.

(i) We change form the E-M representation to the E-¢
representation, with the idea to have a domain of definition
more suitable for the extension to R?,

(ii) By a change of variables, we write the current form
FPE in all R%.

(iii) In this step the original equation, which in current
form describes the incomplete probability density, is
changed into a equation for the complete probability density.
This is carried out by introducing the volume element.

(iv) Finally, the mixed equation obtained in (jii) is trans-
formed into the forward form.

Steps (i) and (ii) require us to know the behavior of the
FPE coefficients under the effect of a change of variables.

We have the FPE (in current form)

ca;:/ j 1[3(; [D W+IZlD,J 5?1] (19)

where W is the density in the full (nonreduced) phase-space.
We make the change of variables

§—8 (E=12), (20)

and we want the new coefficients D and D 5> and the new
volume element C'.

The result has been given by Lax (Ref. 24, Sec. 3: Behav-
ior of the diffusion coefficient under transformation) for the
case where the FPE is written in terms of the complete prob-
ability density P = CW, and the corresponding result for an
equation of the form (19) will be found in Ref. 25,

'de‘(p 2EIS Ein =12 i
€)Y, & 967 3] o
=l (D(§ ))',(,_1 3, OE, Dy (ij=12),

(21b)

and
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C'= |det(—q—(£—))|c, (21c)
D"

wheredet (D (£ )/D (£ '))is the Jacobian of the transformation

(20).

We proceed now to step (i):

(i) The domain of definition (5a) of our current form
FPE (5)is of a rather complicated form, so we have to change
of representation in order to obtain a suitable one for the
extension to R%. Among the possible new representations
there is the “energy-eccentricity” one, whose domain is

— 0 <E<0a
{ 0<e<1. (22)
The change of variables is [see Eq. (20)]
E
E 2
iM" _[ M |E|]1 , (23)
which, when used in Eq. {21), gives (without primes)
= 87 r(mk?)2|2E | *e/n*)(3 — n), (24a)
D, = 24 r(mi?)?|2E |2/, (24b)
D, = 16 mH|2E |3e¢3(e), (24¢)
= 167°r#2E |- ["72¢3 (€) — 2n¢,(€) + ¢,(€)], (24d)
DEE = DsE
= 16m°7#|2E |*n[141le) — ¢.(€)], (24¢)
and
= 16m°(mi?)'%/|2E |>'%. (24f)

{ii) The rectangular domain of definition (22} of the cur-
rent form FPE in the (E-€) representation is easily extended
toall R? by a new change of variables. One, among the sever-
al possibilities, is

=In|E|
e (25)
—é
which gives [applying again expressions (21) for the new co-
efficients and the new volume element]

E
ie € = Arctanh(2¢’ — 1) = ——ln

Dy = —en*Dy, (26a)

=|E|D,, (26b)
Dg.p- = €n’/|E | D, (26¢)
D, =(E|/en’)D,, (26d)
Dg.o =Dz = — Dy, (26¢)
C'=ep|E|C. (26f)

We now have a current form FPE [Eq. (19)] defined in all R?
[variables E’, € given by (25)], and its coefficients are given
by (26). In the two following steps we shall put it in the stan-
dard form, namely,

P 2

el 27

at ,=ka§ )+¢.;Z; a§a§ ( )
where

P=CW (28)
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is the complete probability density.
(iii) From {19) it is evident that we can write (C is time
independent)

(;1: ,:i%i— +,§, “a§,< )ii

or
2 D’. 2 D'
a_P=2_i_[[___+ EDua(l)]P+ J_é'ﬁ]
ot ,-=18§,- C j=1 a§1 i=1 C 3§
(29)
Then defining
D- 2 D‘“
G!l=— + _.’2_ o (30a)
C S C* G
and
D..
G} =2 (30b)
C
we write our FPE in a current form
2 d apP
Z - GP+ NG} ] 31
2% i L .

Applying Eqgs. (30) to the coefficients (26) it is long, but easy,
to find the new coefficients G/ and G ;;:

R 1 3D 2(1 — 2¢?
E'=—[_D Y £E+ ( 2 )DEE])
|E|C 2 |E] €n
(32a)
D _
G, =__1_[+D€_i e 21 2252)0“},
en*C 2 |E| €n
(32b)
1 Dge
g = , 32¢
EE S IEE (32¢)
1 D.
Go=—7—, 32d
Dy,
Groe=G'rp = ————, 32e
E‘¢ E IE‘é'ﬂzC ( )

(iv) Finally, by comparing the standard form (27) and
the current form (31), we get the desired relations

(i=12), (33a)

ji=1
and
G, =G

if i

(iy = 1,2). (33b)

The coefficients of our forward FPE for the complete
probability density are found by substitution of (32) in {33)
and are explicitly

Gp = —gE}t2 —2f(E)[2————¢2:6 €
1 7., 7
+—gi0e) + L3 (e) ——¢2(e)], (34a)
7 € €
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Ge,=ig(E)17 LLE) ﬁw)

2
24 €

222404 41— 74316+ 209160 — b (e)],
(34b)
Gep = 4S(E bleV/e, (34c)

Gee = (F(E)/E)[S3(€)/€ — 2:(e)/€n + &,(€)/7°],

(34d)
Gpov = Gy = LE) [¢3( & — Me’] (34e)
where
T ogp
SlE) =~ 2E ", (354)
fIE)= (Tﬁ/(mK2)3/2)|2E |7/2. (35b)

V.APPLICATION OF THE KHAS’MINSKII CRITERIONTO
THE KEPLER SYSTEM

Now our FPE [Eq. (27) with coefficients (34)] is in the
required form for the application of the Khas’minskii crite-
rion and satisfies all his assumptions. In order to apply this
criterion we must find the value of one of the expressions (17)
for one of the two variables E ', €'; the simplest choice is
B_(E’). We show in this section that B..(E’) >0 and then
(18a) is satisfied, implying that the process is non-recurrent.
Let us define

BE')= — G.(E,€)/Gg g (Ee). (36)
Using the expressions (35) we find
‘ 4 (E ) 775¢3(6)
2¢3( )d—[ﬂ ¢sle) — nd,le)l;
(37)

by using (39a) for expressing ¢,(€) in the bracket [ ], this can
be transformed to

B.(E) =2+ 8E) €8 Bon) e, 1)dle

= 4f(E) 17dsle) 417( 2) B4l€)
n 836 en ¢,"le) -
4 &€ 4 o€

Now, the functions ¢, obey the following recurrence rela-
tions, derived by Marshall:'®

b2, 1€) =L, (€), (39a)
r=0,1,2,..,

Gar i 2l€) = (L + M), , (€, (39b)
where

~ 1 d (62 ) 1 d( )

Lf= — — — | — 40

/ 29 dy nf 2¢ de 7 (40)
and

A 1 (' e? 1 J‘e’3

Mf= —— | —fdn'= —— de'. 41

4 2772L n’zf " 2% Jo 77’3f ‘ “
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Using these relations, we shall now prove the following:
Theorem: All the functions ¢,(€) with > 1 are power
series of € all of whose coefficients are nonnegative (and con-
sequently the same property holds for all their derivatives
with respect to ).
(i) First we have (see Ref. 16)

&,(€) = j — usin ua’u)”2

— e%sin’u
T J;

Since the series expansion of [1 — €%sin’u/u?]~"/? has all its
coefficients positive, we immediately see that ¢,(€) will ap-
pear as a series of (even) powers of € of all whose coefficients
are positive (they essentially involve the integrals

So© = (sinu/u)*"sin’u du).

(ii) Recurrence relation (39a): Let us prove that if f(€) is a
series with nonnegative coefficients, then Lf has the same
property. Now, 1/1 = (1 — €%)~"/? is a series with positive
coefficients (in actual fact this is true for any negative power
of 1), and consequently the same property holds for (€2/7)f.
Moreover, since the first term has exponent 2 (or larger), the
derivative (d /de€)[(€’/n)f] has its first term with exponent 1
{or larger), hence dividing by € still gives us a genuine power
series of € (nonnegative powers), and all coefficients are non-
negative. Q. E. D.

(iii) Recurrence relation (39b): We now want to prove
that if (€) is a series with nonnegative coefficients, then
(L 4+ M }f has the same property. The proof is slightly more
involved than the previous one. From the definitions (40) and
(41) of the operators L and M, we get, for any function f'(¢)

sin’u du

(1 — e¥(sinu/u)?)’*

(42)

d. .~ =~ 3
ZpAL + M) =L + 2, (43a)
de 2 2
and by direct differentiation,
d A A
—[7L +M)f]
de
=q2di[(f+19)f] _ 26l + MY (43b)
€

Therefore, upon replacing the left hand side of {43b) by its
expression (43a),

-(L+M)f+— f+ f”

(43c)

d A A
;[(L +M\f] =

Now, introducing the notation g(€) = (f + M )f(€), Eq. (43c)
appears as a differential equation for g,

dg/de = A (€)g + B (¢), (44)
where 4 (€) = 2¢/n% and B (€) =3 f'/n + f " /7%
Now, 7~ ' and 5~ are series with nonnegative coeffi-

cients. Thus, if we assume that the power series of f (€) has this
property, the property also holds for ', f“ 4 (€), and B (€). On
the other hand, the first coefficient of the power series of g(€),
namely g(0), is nonnegative
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g0)= (L + M)f(e). _,,

1 62 € 1 E:Oé_/}
S [N R 3 [ N
[(7] 27]3 27] €=0 2772 0 n'jf

=/(0)>0. (45)

Then Eq. {(44) gives us g'(0) = A4 (0)g(0) + B (0)>0, similarly,
by successive differentiation of (44) we prove that all the de-
rivatives of gl¢) take nonnegative values for € = 0; differenti-
ating (44) n times through Leibnitz rule gives us g = V(¢) as
B ™€) plus a linear combination of {g(e), g'(€),....g""(€)} with
all coefficients being nonnegative: Thus, if g(0),...,¢'"(0)>0,
then g * 1(0)30, and since g(0)>>0, the property holds for
every n. Thus, if f(€) is a power series with nonnegative coeffi-
cients, the same property holds for (L + M 12

It may be recalled that this procedure (namely obtain-
ing the coefficients of the Taylor expansion of the solution of
a differential equation through successive differentiation of
the equation) is just the one used in the original existence
proof by Cauchy (so-called method of limits), which uses
“dominant series” with nonnegative coefficients (see, e.g.,
Ince, Ref. 26).

(iv) We may now trivially conclude: If the property of
being a series of powers of € with nonnegative coefficients
holds for some function ¢, (€), since this property is con-
served by both recurrence relations (39a) and (39b), it is obvi-
ous that, through the suitable application of (39a) and (39b)
alternatively, the same property will also hold for all ¢, (¢)
with 7> r,. But, according to point (i) above, the property
holds for r = 1, hence also for > 1, which completes the
proof.

Let us now return to the Eq. (38) for B, (E ). It is clear
that B, (E’}>2, because all terms beyond 2 in the right-hand
side are nonnegative (for 0<e<1). More precisely, these
terms are strictly positive for € > 0, and vanish for e = 0.
This vanishing is obvious for the 2nd, 3rd, and 5th terms
since € is explicitly factored out, and as concerns the 4th term
we have ¢ ;(0) = 0 because all series ¢, (€} involve only even
powers of € [this may be directly seen from their definition
Eq. (8], and therefore ¢ ;(0) = 0 whatever r may be.

We therefore get

B (E')=Inf B.(E') =2, (46)

since the lower bound 2 is actually reached for € = 0.
Inserting (46) into the left-hand side of (18a), we get

+ o X
f exp[——J' 2dy] dx

= er mexp[ —2(x — x,)] dx

+ o
= f exp( — 2z)dz = 1/2. 47)

Thus the criterion (18a) is satisfied, and we may therefore
conclude that the stochastic process associated with the
Fokker—Planck equation (5) (of the hydrogen atom problem)
Is nonrecurrent.
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VI. REMARKS

We finish this paper with some remarks:

(i) As mentioned in Sec. II1, we know from Khas’mins-
kii'® that if a stochastic process is nonrecurrent there does
not exist any finite invariant measure. Therefore, if another
stationary solution different from the trivial one (W = const)
exists, it will also present the problem of self-ionization.

(ii) Also from Khas’minskii'® we have: If the invariant
measure is not unique the associated process is nonrecur-
rent. Thus the knowledge of a positive stationary solution
different from the trivial one (the constant) would be enough
for proving the nonrecurrence property. In the Kepler sys-
tem the existence of stationary (positive) solutions, different
from the constant, has not yet been proved rigorously; how-
ever, since we have proved the nonrecurrence property, the
existence of other stationary (positive) solutions (nonfinite)
seems quite likely. A possibility could be to prove the exis-
tence of such a solution determined by suitable boundary
conditions different from those corresponding to the trivial
constant solution; prescribed positive nonconstant values
along the boundaries, or zero-flux condition along some
boundary {along which the constant solution has nonzero
flux), or any mixture of both types. In any case, the main
problem would not be to prove that the solution exists, but
rather that it is nonnegative throughout the whole domain.

The modified Kepler problem [Sec. II, Eq. (13)] is an
example where the nonuniqueness is proved [there is the
constant solution and the solution given by Eq. (14)], and this
is enough for ensuring the nonrecurrence property. Another
example is the Kepler system in the Rayleigh—Jeans field
[S&(w) = const w?] with Lorentz-Dirac damping force,
where the constant and the Boltzmann-Gibbs solutions are
known and both are divergent.'®

(iii) The present results could have led to the idea of
modifying the spectral density (1) while keeping unchanged
the seemingly well-established Lorentz-Dirac damping
force. However, it is this last one which is essentially respon-
sible.'® As we already said, the drift coefficients [we consider
here the coefficients of the equation in current form (5) or
{19), not those of the equation in standard form (27)] depend
only on the damping force [see Egs. (5a)] and the existence of
the trivial constant solution is a consequence of them, be-
cause div C = 0. Then in all problems with this damping
force two possibilities arise:

(a) The solution is unique and is therefore the constant
one, and it is nonfinite.

(b) The solution is nonunique; then the process is nonre-
current, and only nonfinite invariant measures may exist. As
we have seen in the preceding remark, possibility (b) is the
most likely, but in any case the result is unsatisfactory since
we do not have any finite invariant measure.

It is a rather remarkable and unexpected result that, for
the Coulomb potential, if we assume the Lorentz-Dirac
damping law and a position and velocity-independent spec-
trum for the stochastic force (or, even more generally'” if we
simply assume a zero divergence for this force), then no spec-
tral density allows us to get a “‘reasonable” stationary state
(stationary distribution with a finite integral).

P. Claverie and F. Soto 758



We conclude that the problem of finding a better agree-
ment between classical stochastic theories, such as SED, and
quantum theory (e.g., finding some reasonable stationary
state for the Kepler system) is deeper than previously
thought. This paper suggest that the change of the spectral
density only is not enough and more drastic modifications
(e.g., introducing a position and/or velocity-dependent sto-
chastic force, or a modified damping force, or both) would be
necessary in the present version of S. E. D. (as described in
Refs. 5-8).
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Pseudoscalar interaction of coupled quantum-mechanical oscillators with

independent Fermi systems ®

Guy A. Battle lll
Mathematics Department, Texas A&M University, College Station, Texas 77843

(Received 27 January 1981; accepted for publication 27 March 1981)

Using the techniques of constructive quantum field theory we analyze the dynamics of a cubic
lattice of quantum mechanical oscillators with nearest-neighbor coupling that interact with a
corresponding lattice of finite-volume truncations of independent relativistic Fermi fields. Since
the model is nonrelativistic, we rely on a nonrelativistic version of the Osterwalder-Schrader
(OS) reconstruction theorem. Also, the absence of Nelson’s symmetry in the (un)Euclidean
picture is not serious because the transfer matrix in a given space direction is simple enough to
make the verification of spatial OS positivity easy. After establishing for our model many of the
basic results that hold for the more standard models, we give a proof of the Fortuin—Kasteleyn—
Ginibre {FK G) inequality that is essentially independent of the dimension of the Fermi systems.

PACS numbers: 03.65. — w, 03.70. + k, 02.50.Sk, 02.30.Ap

1. INTRODUCTION

Recently the Fortuin-Kasteleyn—Ginibre (FKG) in-
equality was shown to hold for the scalar Yukawa, quantum
field theory.! Whether the inequality holds for the pseudos-
calar model is still an open question, however, and the meth-
od of Ref. 1 does not seem to suggest specifically how this
question might be resolved (although the general strategy
appears to be the best approach). Nevertheless, a special cal-
culation was made in Ref. 1 which tended to suggest that the
FKG inequality actually held for the pseudoscalar Yukawa,,
model for arbitrary space-time dimension 7.

In this paper we present further evidence by studying a
nonrelativistic modification of the pseudoscalar Yukawa
model in which the role of the fermions is reduced but not
eliminated. More specifically, we consider a lattice of quan-
tum-mechanical oscillators with nearest-neighbor coupling
interacting with a lattice of Fermi systems which do not ex-
change fermions. We may take the lattice dimension to be
arbitrary; as we will see, the singular behavior of the model is
determined by the dimension of the Fermi system at each
lattice site. We consider only one-dimensional Fermi sys-
tems (i.e., fermions that live in two space-time dimensions),
but our proof of the FKG inequality for such a model is
effectively independent of dimension.

Since our model is nonrelativistic, however, we must
investigate to what extent the techniques and results of con-
structive quantum field theory are affected by such a modifi-
cation, and much of the paper is devoted to the establish-
ment of basic results for the model. Before describing our
model in greater detail, we pause to make a few remarks
about the axiomatics of nonrelativistic field theories.

Let { #7,(x1,....x,, )} 2 o be scalar distributions on pro-
ducts of, say, R* X R. If these distributions are the vacuum
expectations for the dynamics of a nonrelativistic field in v
space dimensions, then the strongest set of axioms we can
generally expect the distributions to satisfy is the following:

*IResearch supported by NSF Grant MCS 8002499.
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Non RW1 (Temperedness): %, is tempered; # , = 1,
and 7, (X1, X, ) = # (X seenXy)-

Non RW?2 (Translation Invariance in Space and Time):
For ceR"XR, ¥# ,(x; —¢,...x, —¢) = ¥ ,(x1,e0X,,).

Non RW3 (Positive Definiteness): For £, € #(R"XR),
1< j<l, 1<k<n,

I} n;
z an+ ni(xh""xnl-’ynfr'-vyl) H f;k(xk)
k=1

A7 =1

x T fubd xd™ y>0.
k=1
Non RW4 (Non-Relativistic Spectrum Condition): For

150,56 W, €y 1) = (06160 + G B £0)

Then supp#, C(R*XR*)" ',

Non RWS5 (Time Cluster Property): Let
v {Le,m 4+ n)—{x Xy — (04 )y, — (0,4 )] be
a bijection. Then

lim %, (1.7 (m + n)

Ao+

=Wm(xl""’xm)Wn(ylrnayn)

in the sense of distributions.

Non RW6 {Space Cluster Property): For nonzero aeR”
let
Y Leom + 0} —{x 0%, ¥, — (Aa,0),..., ¥, — (1a,0)}
be a bijection. Then

lim % (1 (1 (m + 1))

Ao

=Wm(xl""’xm)Wn(yl""»yn)

in the sense of distributions.

For convenience we call these axioms the nonrelativistic
Wightman axioms; they comprise the obvious nonrelativis-
tic analog of the Wightman set of axioms.*>** We cannot
expect locality to hold (i.e., symmetry of %", with respect to
arguments whose differences lie outside the light cone) be-
cause the propagation of an effect due to a nonrelativistic
interaction is typically instantaneous. The space cluster
property is the obvious analog of the relativistic cluster prop-
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erty, but the time cluster property must now be stated explic-
itly and separately because it is now essential for establishing
uniqueness of the vacuum when one applies the proof of the
Wightman reconstruction theorem to construct a nonrelati-
vistic Garding-Wightman theory. The point is that the ab-
sence of relativistic invariance severs the connection be-
tween the Hamiltonian and momentum operators, so the
two cluster properties are in general independent.

The price we pay for this nonrelativistic modification of
the Wightman axioms lies in the weakness of the spectrum
condition. Since the distributions W, are required only to be
supported in products of forward half-space-times rather
than in products of forward light cones, the general theory of
Laplace transforms® can no longer provide us with analytic
continuations of the %, to extended forward tubes.”™ In
particular, we cannot prove a PCT theorem>** for a nonre-
lativistic theory. What our spectrum condition does allow,
however, is an analytic continuation of the %, to products
of complex half-planes with respect to successive differences
in the time arguments, where the space arguments are held
fixed. (Strictly speaking, we smear with respect to the space
arguments and hold the test functions fixed.) This simple-
minded analytic continuation certainly captures the Euclid-
ean points with strictly ordered imaginary times so the non-
relativistic Wightman theory has Schwinger functions (Eu-
clidean Green’s functions*®7).

Before discussing what properties the Schwinger func-
tions of a nonrelativistic theory should have in order to de-
termine the theory, we proceed with a detailed description of
the model we wish to study.

Consider a v-dimensional cubic lattice indexed by Z”
and let A CZ" have the form

={meZ| —L;<m<L;},
where L,,...,.L, € Z™*. At each lattice site m € A we intro-
duce a one-dimensional quantum-mechanical system; i.e.,
we let %, be the mth copy of L *(R) and denote the usual
momentum and position operators on this mth copy by P,,

and Q,,, respectively. The Hilbert space for this system is
® men 7, and we wish to consider the Hamiltonian

H"= %(Pi +w50%) + (m;;u(Qm = Qs
(1.1)

where““{(m,m') CA > means “m,m’'eA and are nearest neigh-
bors in the periodic sense.” This interaction describes an
array of harmonic oscillators with fundamental frequency
o, and nearest-neighbor coupling, and H, is self-adjoint,
bounded below, and has only discrete spectrum. As usual,
the eigenvalues and eigenfunctions are explicitly computed
by decomposing H, into normal modes via the Fourier
transform. One defines

_ /2 im-k im-
a,lk)=wlk) Ze Q. + (k)mze kP_keA*
(1.2)
where
* Trl, 77.1\/
A¥= [(Z- yeeny _[T) _Lj <IJ<LJ’]I€ Z},
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olk P=w? + 2 (1 — cosk;). (1.3)
Hence
aA(k )1'=w(k)1/2 Z e—im.ka
_ w(k;')mm%eﬂ'mwm, (1.4)

where 1 denotes operator adjoint~ moreover,

I
On = |A|k;‘e (k)1/2 las(k)+as(— k)],
(1.5)
P, = |A| kz e~ ™olk) *[a, (k) —as(—k)'],
(1.6)
a_ 1

=~ 2>, oklaalk Vla,lk)+ 3 wlk). (1.7)
A & KA *
Let 2 be the ground state and consider the corre-
sponding expectations

(/H (e"‘"‘Qm,e“"”‘)m,m),m,eA,
=1

for our dynamical system. The limits of such expectations as
A— « exist and can be computed explicitly, and it is well
known that these vacuum expectation values for the result-
ing infinite system of coupled quantum-mechanical oscilla-
tors yield the discrete version of the free scalar quantum field
theory®~® in the sense of Wightman reconstruction.? The (re-
constructed) Hilbert space can be realized as the symmetric
Fock space # ; over | %(Z*) or some Sobelev variation there-
of, and the annihilation {creation) operator a(k }{a(k )") is de-
fined as an operator-valued distribution over T in periodic
analogy to the scalar field case.® The (reconstructed) position
operators Q,, form the “time-zero field” and they are related
to the annihilation and creation operators via the formula

_ 1 . e—fm-k
o= (27)vad “ote kel

Similarly the (reconstructed) momentum operators P,, form
the “time-zero conjugate field,” and we have

k)Y, (1.8)

J (277)vf d*ke™ ™*o(k)[atk) — a( — k)]
(1.9)

Our Hamiltonian is given by

= d*k wlk Ya(k).
g ) 4k otk etk k)

[The constant term in (1.7) diverges as A— oo, but it is can-

celled in the vacuum expectation expressions.] We also have
the formula for H in configuration space

(1.10)

H= Y (P +05:05:)+ z; (Qm — Q)
mezZ” (mm')CA
(1.11)
where : : denotes the usual Wick ordering.*” The expres-

sions {1.10) and (1.11) are understood in the sense of quadrat-
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ic forms™* on the form domain for the self-adjoint operator

Following the customary choice of one-particle space in
the scalar field case, we choose the Hilbert space

2 [ g LK)
= 4wl

as our “‘one-particle” space; the symmetric Fock space over
this space will serve as our time-zero Hilbert space. As usual,
it should be noted that as a consequence of this choice the
functorial annihilation (creation) operator®® is not

alk Ya(k )") but w(k )~ ""%alk )w(k )~ /%a(k }'). Finally, since
the ground state representation of our infinite quantum-me-
chanical system is the “free boson” part of our model (where
the fundamental frequency w, is the “boson mass”’), we will
denote H by H,, in the sequel. Similarly, we denote the vacu-
um state by 2.

The free Fermi part of our model is described as follows:
at each lattice site we place an interval, say [ — m,7], in which
the periodic truncation of the time-zero relativistic Fermi
fields (in two space-time dimensions) with Fermi mass M is
introduced. Moreover, we stipulate that these Fermi systems
do not exchange fermions, so the Fermi fields at different
lattice sites are independent. Thus we denote the Fermi fields

at lattice site m by ¢¥™(x), ¥ (x) for @ = 0,1 and

— 7w<x<m, where, as usual, the latter fields are the adjoint
spinor fields. We let ' denote the antisymmetric Fock
space over an mth copy of the periodic version of the usual
one-particle Hilbert space for fermions in one space dimen-
sion,”'® and we denote the free fermion Hamiltonian by

‘fe RZ (1.12)

H'?. The smearing of ¢ ,y™ against appropriate test
functions yields bounded operators on % ", and the opera-
tor H {™is bounded below. Let £2 ™ denote the vacuum state,

Since the analysis of our interacting system will be
i

n (i ! - i
(TLIL (e 3 vzt ) |2 )

i
= 2 o detlgj.kgn [S((xj’sj)’(xk ’sk))r ]a/ak(l - 5jk),

where

0 -1
r= (1 0 )
We have singled out this particular matrix because it will be
involved in our interacting theory.
If only a finite set A of lattice sites are occupied by these

Fermi systems, the Hilbert space for the composite free the-
ory is

(1.17)

Hy=F g0 ® FYh

meA

(1.18)
the Hamiltonian is H, + .., H'Y", and the vacuum is
2,=0,8 & 07 (1.19)
meA

We propose to perturb the ground state of our system with
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based entirely on the Matthews—Salam-Seiler strategy,''~'¢
in which the fermions are “integrated out,” we omit the ex-
plicit description of the Fermi fields and Fermi Hamiltonian
and merely state the typical formulas we will need. First, for
Sts-sSy5t .ot distinct we have the explicit formula

(T[ H (e_t(Hlpl ¢($)(x/,)e’/”'[-"') InI (efs,H‘,’m

=1 F=1

S/ (;'") m m
Xt "o wap)

= *+ dCt1<j,k<nS((xj»sj)»(J’k:fk))ajﬂk’ (1.13)
where T'[ ] denotes the ordering of the product based on the
one-to-one correspondence 7:{ 1,...,2z2}—{5,....8,,¢,,....¢,, }
defined by y(k ) < ¥k + 1} (i.e., time ordering),

S((x.8)( y,t))

—_— L i ein(x— yjjw da) eim(s—z) IBO +iﬁln +M,
2r = - o’ +n+M?

(1.14)
p=(1 o) B=(, 7))

and + on the rhs of (1.13) depends on the number of trans-
positions required to change the time ordering of operators
on the lhs to an ordering where the s alternate with the s
(+ if the number is even and — if the number is odd). S is
the Euclidean Fermi propagator'' with periodic boundary
conditions in one direction and free boundary conditions in
the other. As always, the structure of the matrix on the rhs of
(1.13) ensures that the determinant is independent of the or-
dering of { 1,...,n}. (1.13) can be derived from the original
description of the free Fermi field theory in periodic analogy
to the derivation'’ for the free infinite volume theory. Fol-
lowing rules for evaluating free expectations involving
Wick-ordered fermions, ' 'S one also obtains formulas for
currents. For example,

(1.15)

[yl
oY

(1.16)

an interaction that is *local.” More specifically, we wish to
construct and study the vacuum expectation values of the
theory whose (unrenormalized) Hamiltonian for a finite vol-
ume A is given by

Hy+ > HY
meA
x4 1 _
+4 > Q. dx > Y e Yo )
meA - a,a’ =0

where A is the coupling constant. Thus, each quantum-me-
chanical oscillator interacts with its own Fermi microcosm,
where the additional force acting on the oscillator is propor-
tional to a relativistic current density averaged over the in-
terval. The Fermi systems at different lattice sites interact
only through the quantum-mechanical couplings (i.e., ‘“‘bo-
sonically”). As in the case of the Yukawa, quantum field
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theory,'® the Hamiltonian has ultraviolet divergences that
must be cancelled by an infinite energy counterterm and an
infinite “boson mass” counterterm (i.e., an infinite shift in
the spring constant ). Thus, our Hamiltonian is given by

Hy=H,+ S HP+13 me 3 W
meA aa_

meA

Xraa a ( )'—560 (/{) Z ‘an—‘SE(Z')’

meA
where 8w*(A ) and 8E (A ) will be determined when we rigor-
ously define H,, by the removal of a standard ultraviolet
cutoff in Sec. 3.

It should not be surprising that the renormalization
problems are so similar to those of the Yukawa, (Y,) model.
The ultraviolet singularities are independent of the lattice
dimension v, and in the case v = 1 it is not hard to see that
our model is mathematically equivalent to a nonrelativistic
truncation of the ¥, model that preserves the singular struc-
ture of the Fermi fields. (This fact will be even more trans-
parent in the Matthews—Salam-Seiler formulation.) More
generally, if the periodic Fermi system at each lattice site is
chosen to be n-dimensional, we expect the renormalization
problems to be as difficult for our model as they are for the
Y, ., model.

We begin our analysis in Sec. 2 by deriving a Matthews-—
Salam-Seiler formula with an ultraviolet cutoff imposed on
the time-zero Fermi fields. We follow the “semi-Euclidean”
approach of Seiler and Simon'* (i.e., we avoid the use of
Osterwalder—Schrader fields'®). This strategy is based on the
Phillips perturbation expansion for semigroups together
with an application of free expectation formulas to each
term. The free Euclidean measure in our case is the Gaussian
measure du on ¥’'(Z” X R) with mean zero and covariance

j 8 (ms) (m',5) duld )

iw(s — §') vk
(mmj doe f e +a>(k)2
(1.20)
As in the case of the standard free boson measure,>!”'® we
have checkerboard and hypercontractive inequalities avail-
able to us via the Markov property and Nelson’s fundamen-
tal hypercontractive result.'®
Although our derivation of a Matthews—-Salam—Seiler
formula is basically a mimicry of the Seiler-Simon deriva-
tion for the Y, model, we illustrate the proof for two reasons.
First, there is an error in the Seiler—Simon paper which was
pointed out by Lon Rosen and Barry Simon (private commu-
nication), and so we must supplement the proof with an ar-
gument due to Rosen. Second, the term-by-term identifica-
tion of the Phillips perturbation expansion with the
expansion for the corresponding Matthews—Salam-Seiler
expression is complicated by the fact that different lattice
sites exchange “bosons” but do not exchange fermions.
With regard to Secs. 3 and 4 there is a general point that
must be stressed. Since our model is nonrelativistic, the ana-
lytic continuation of the model to imaginary time is unEucli-
dean. (We avoid the word “non-Euclidean” for obvious rea-
sons). In particular, Nelson’s symmetry does not hold. Since
several of the basic results in constructive quantum field the-
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ory seem to depend on Nelson’s symmetry, this appears to be
a disaster until one realizes the implications of Ref. 14. It is
well known but rarely emphasized?° that the main function
of Nelson’s symmetry is to identify the transfer matrix for a
spatial direction. As Seiler and Simon point out,'* the crucial
property is OS positivity in the spatial directions (i.e., self-

adjointness of the transfer matrices). Thus the power of Nel-
son’s symmetry is no more mysterious than that of any other
symmety that eliminates the need for a possibly difficult cal-
culation. In our case Nelson’s symmetry is not needed be-

cause the transfer matrices for the spatial directions are very

- simple; their off-diagonal elements are merely those that

arise from a nearest-neighbor ferromagnetic coupling.'®

It is the absence of a Reeh—Schlieder theorem*!'* that
creates problem for us. The free vacuum 2, is certainly cy-
clic in #°, with respect to products of free propagations of

Q,, and smeared ¢7)(x), ¥'™"(x), where

meZ,m'eA, — m<x<m,a = 0,1; by analytic continuation to
imaginary time one can obtain a cyclicity statement for semi-
group propagations as well. However, since the Fermi sys-
tems are independent £2,, is clearly not cyclic with respect to
products of free propagations supported in an arbitrary fixed
rectangle in our space-time Z” X R. In the Seiler-Simon
analysis of the Y, model such a property of ¥, (known as a
Reeh-Schlieder theorem) seems to be involved in three
arguments:

{a) Proof of semiboundedness of H ,,

(b) Proof of vacuum overlap,

(c) Refinement of Frohlich bounds to temperedness
bounds for the Schwinger functions for arbitrary coupling
strength A. (In the case of weak coupling the temperedness
bounds are derivable from the cluster expansion.!?%}

In Sec. 3 we accomplish (a) and (b) for our model without
using a Reeh-Schlieder theorem or even OS positivity in the
spatial directions. Our proof is based on the Matthews—Sa-
lam~Seiler formula together with the fact that the interac-
tion is pseudoscalar (i.e., that I"is anti-Hermitian). We use
modified Jost states involving truncations of Q,,, so we can-
not extend our method to proving temperedness bounds; (c)
is beyond our reach at the present time. The consequences of
Sec. 3 are a Euclidean Gell-Mann-Low formula and a Mat-
thews—Salam~Seiler formula without ultraviolet cutoffs.
The interacting measure is

H detrcn(l - AKm )Jdlu’
meA

where det,,, is a suitably renormalized determinant and K’ m
is an operator-valued random variable that is

2 m) x| — 172,02 -Measurable (i.e., K,, depends only on

x¢® (m,:), where y is the characteristic function of the interval
[—12/2,/2])). A X[—t/2,t/2]is,of course, the given Eu-
clidean finite-volume cutoff, and the Gell-Mann—~Low for-
mula involves the ¢ = oo limit with A fixed. Although the
only couplings of the interacting measure in the spatial di-
rections are due to the free measure du, the measure is highly
nonlocal in the imaginary time direction because the fer-
mions are coupled in that direction. Thus, on a scale of diffi-
culty in controlling the infinite-volume theory, our model
lies roughly between P (¢ ), and ¥,.

(1.21)
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In Sec. 4 we establish OS positivity,>'* existence of the

Euclidean pressure,'®* and Frohlich bounds'#?* for the
model. Also, we point out that in the case of weak coupling
the cluster expansion®'"?* for the ¥, model adapted to our
model yields convergence of the finite-volume Schwinger
functions to infinite-volume Schwinger functions satisfying
exponential clustering and the unEuclidean Osterwalder—
Schrader axioms [i.e., the (EQ ') Osterwalder—Schrader axi-
oms® modified by the explicit inclusion of space reflections
and translations in the positivity and clustering axioms and
by the replacement of the Euclidean group with the group of
imaginary time translations and those space translations ap-
propriate to the model in question]. This information yields
the following basic results:

Theorem 1.1: Let £, be the energy of the ground states
ofH,and2, = || P,12,| "' P,(2,,whereP, is the projec-
tion onto the eigenspace of £, . Then the expectations

(T[ Ir1 (eih(HAQm“e—ikaA) rn[ (eiSkHA w(‘:':;‘) (xk)e-—isk}]/‘))
k=1 k=1

X kl-I1 (eu" ! kHA'ﬁ(L;:i)( Yile B a )]ﬁ/\ ’ﬁA>
converge in the sense of distributions as A—» 0, provided
that w; ‘|4 | and M ~'|4 | are sufficiently small.

Theorem 1.2: The infinite volume expectations (proper-
ly indexed) satisfy all of the nonrelativistic Wightman axi-
oms including a positive energy gap.

The axiomatic result that is used here is a nonrelativistic
Osterwalder-Schrader reconstruction theorem. As in our
discussion of the nonrelativistic Wightman axioms, we con-
centrate on scalar distributions on products of R* X R with
the understanding that our remarks extend to the more com-
plicated objects that our model would involve.

Theorem 1.3: Let {S,,(x,,....x, )} 7_ , be distributions on
products of R* X R such that S, is supported by

(R"XRJ%
={((X{)81,-.-,(X,,,5, ))E(R"XR)"|5y,...,5, are distinct}

in the sense of distributions.* If the sequence

{S,(X1- 00X, )} 7_ o satisfies the un-Euclidean Osterwalder-
Schrader axioms, then these distributions are the Schwinger
functions of a nonrelativistic Wightman theory.
This theorem follows by inspection of the standard OS re-
construction proof.® The point is that the OS analytic con-
tinuation is the same analytic continuation mentioned in our
discussion of the nonrelativistic axioms: time arguments
play a distinguished role. Osterwalder and Schrader obtain
the nonrelativistic spectrum condition on the Wightman dis-
tributions they construct before using Euclidean invariance
to obtain relativistic invariance (from which the relativistic
spectrum condition, analytic continuation of Wightman dis-
tributions to extended forward tubes, and locality follow);
i.e., they prove relativistic properties ‘“‘after the fact.” The
time cluster property of nonrelativistic Wightman distribu-
tions follows from uniqueness of the vacuum they construct,
while the space cluster property follows from the space clus-
ter property and temperedness bounds of the Schwinger
functions together with the general theory of Laplace trans-
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forms and the Vitali convergence theorem.® Although space
clustering is usually not proved this way in the case of rela-
tivistic theories, the argument is of a standard type in con-
structive field theory.?

Remark: The converse of this theorem does not hold. In
particular, the Schwinger functions of an arbitrary nonrela-
tivistic theory may not be symmetric in their arguments.

Sections 5 and 6 are devoted to proving that our model
satisfies the FKG inequality?®

Theorem 1.4: Let ( ), , be the normalized expectation
for the measure (1.21). Let F,G be increasing functionson R,
such that

fI@)=F(p(myt),...d (m,.t,)),
8 )=G (¢ (mi,2]),....0 (m,,t ),

and fg are integrable with respect to (1.21). Then
(S8 ar = (V4. (8) 4. >0.

Our basic strategy is the same as in Ref. 1. In Sec. 5 we find a
condition that implies Theorem 1.4; as in the case of the
Yukawa model, we expect the corresponding sufficiency
statement for higher-dimensional Fermi systems to hold be-
cause, the counterterms that cancel ultraviolet divergences
must be local, and local terms are annihilated in the deriva-
tion of the sufficient condition.

In Sec. 6 we prove the sufficient condition for an arbi-
trary Fermi dimension . For our model the condition boils
down to

trS's,t )S(1,5)>0, meZ, neZr, (1.22)

where §"(s,¢ ) is a particular solution of the ordinary differ-
ential equation

d . & 5
—ﬁ(,a —iy nB, +M—TI¢(ms)|Ss,r)

=1
=T68(s~1)

and f3,,...,3, are Dirac matrices. As in Ref. 1, the two-point
function of interest is not explicitly computable, nor do the
symmetries of the equation make the desired positivity con-
dition manifest. Roughly speaking, we prove (1.22) by writ-
ing the quantity in question as the sum of a conserved quanti-
ty and a quantity whose sign is manifest.

2. MATTHEWS-SALAM-~SEILER PICTURE

As our starting point we take the obvious adaptation of
the free boson Feynman—-Kac-Nelson formula to our model.

Theorem 2.1: For a finite A CZ” and ¢ > 0, set
H=H, +cZX,.,02 andletoeA ". Let du be the Gaussian
measure on *'(Z* X R) defined by (1.20) and let F,,...,F, be
arbitrary continuous, polynomially bounded functions on R.
Then for s,<s, < <8, <5, 1

(e~(_v, — SV H l'nI (F((Qo‘/))eé(s; = SAH )-QB’-()B)

=1

= [ au@) [T FA616t15)

X exp(-—c D o

meA Vs,

1

& (m,s)? ds), (2.1)
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where the operator FAQ,.,) is defined by the functional cal-
culus. We omit the proof of this theorem because it differs in
no significant way from the proof of the Feynman-Kac- -Nel-
son formula for the standard free scalar model.>'"'* Qur
measure dy is essentially a lattice of massive Wiener mea-
sures coupled by a nearest-neighbor interaction and the
proof of (2.1) is based on the Markov property corresponding
to such a measure.

Remarks: 1. As in Refs. 3, 17, and 18, we can translate
the Gaussian definition of Wick ordering into the Euclidean
analog of the definition for time-zero fields by introducing
the Euclidean Fock space appropriate to our model—the
symmetric Fock space over the Hilbert space

L er@xri /1P

_f fd"k ’f(k"‘)”zz <. (2.2)
o* + olk)

2. du is supported by the Borel set of all ¢ such that
¢ (m,s) is a-Holder continuous in s, provided that a < 15.27
Moreover, it follows from (1.20) that

f@wwwm%w. (2.3)

3. It follows from (2.3) and hypercontractivity®'”'® that
& (m,s) lies in L #(du) for 1< p < w0, s0 our random field will
not require smearing against test functions when we con-
struct our interacting expectations.

Theorem2.2: Let m,,...,m,€Z” and ¢,,...,¢,,€Z such that
the pairs (m,,¢, ) are distinct. For each &, let F, be an arbi-
trary X, -measurable function on *”’(Z” X R), where
A = [m; ] X [¢4,¢, + 1]. There are constants 3,y >0, de-
pendent only on the fundamental frequency w, (boson mass},
such that if the minimum separation between sets A, is
greater than or equal to %, then for 1< p < o

( LI, 17172 )l/p< i (lek {””dﬂ)w. (2.4)

K=1 K=1
J

This theorem represents an obvious adaptation of checker-
board estimates'®; as in the case of the free scalar field the-
ory, the basic reasoning for proving such a result involves the
Markov property and Nelson’s general hypercontractive re-
sult.'” We omit the details, but emphasize that the explicit
estimates needed to make the strategy work are

(a)o + Z (1— cosk/)) f dow e~

=1
of + 0+ ZC— (1 — cosk,)
=eXp[—(wg+ 3 (1—cosk,))mls—s’|], 2.5)
=1

(w0+a) + z (1 — cosk, ) J dk, 4" "

=1
r#EJ

i
X
wy +o® + 2,71 — cosk,)

v, —jn—=n'
<2w0"[1 + %(wé +o’'+ Y (1 —cosk,))] .

/=1
>y

(2.6)

{2.5} is a standard calculation, while (2.6) follows from the
contour-shifting proof of Lemma IV.5 in Ref. 18, where we
are shifting from Im &, =0 to

Im k; = sgn(n — n')

X ln[l + % (wg tert 3 (- cosk,))].

=1

(A
We should also note that when one applies (2.6) to the GRS
(Guerra, Rosen, and Simon) arguments,'® one uses the co-
ordinate-zero subspaces of the Euclidean Fock space instead
of the time-zero subspace [i.e., the symmetric Fock space
over the Hilbert space

[fef'(Z”‘lxRH I/1P= [ do Lv, Ak

instead of the symmetric Fock space over the Hilbert space
(1.12)]. The latter space is, of course, the Hilbert space used
in applying (2.5). Notice also that the (a priori) necessity for a
separation y is made transparent by the estimate (2.6). If v, is
small, then the hypercontractivity argument is destroyed
unless one chooses a separation like

v> In2wy '/ In(1 + lw}).

Because of the stated need for a separation 7, Theorem
2.2 is too weak for useful applications. However, given this
theorem, we can immediately eliminate the need for y.

Theorem 2.3: With the objects and assumptions of
Theorem 2.2, drop the separation requirement (i.e., set

765 J. Math. Phys., Vol. 23, No. 5, May 1982

| flkw)” cw
(w2 + w? + Z¥Z N1 — cosk,))'"?
o /=1 &

2.7)

—
y = 1). There is a constant > 0, dependent only on w,, such
that (2.3) holds.

One proves this by merely decoupling the lattice into
sublattices with spacing y via the Holder inequality and then
applying Theorem 2.2. Such a crude initial decoupling does
not hurt us because the number of sublattices depends only
on ¥, which in turn depends only on w,,.

Remark: It has been known for some time that checker-
board estimates for lattice Markov fields can be derived. (See
the concluding remarks of Sec. IV.2 in Ref. 18/

In our study of the interacting theory we impose an
ultraviolet cutoff on the time-zero Fermi fields at each lattice

site m € Z. More specifically, we let ¢/ (x){ ¥4 (x)) denote
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the regularization of ¥/7"(x)( ¥ (x)) that includes only those
Fourier components with momenta — ¥,...,0,...,N. The cut-
off versions of (1.13) and (1.16) are

(7 [1] (e % gl (x Je ')
X I = upipae o))

= detl<j,k<nSN((xj1sj)’(ykrtk))aj,Bk (2.8)

(m) b (x e sH " )]Q(m)ﬂ m))

det1<j,k<n [Sa(0x 58 ), a8 M ]a,ak(l — &)
(2.9)

.
sl

respectively, where

Sw(lxs)( 3t )=

2 em(x - ¥

n= — N
ol +iBn+M
X d elw(s t) lﬂow 1 .
J ® o>+ nt4+ M?
(2.10)

Following the semi-Euclidean strategy of Seiler-Si-
mon,'* we begin by stating the basic result for our regular-
ized Hamiltonian.

Theorem 2.4: Fix NeZ™*, A real, A CZ" finite, ¢y, >0
(where the N-dependence will be specified in Sec. 3), and set

Hy=Hp + ZH(I:‘")+CN ZQfm (2.11)
Z Q. 2 dx YN O e Y (x):
ik (2.12)

Then H,, + AV, is self-adjoint and bounded below on the
domain of H .

This theorem follows immediately from the fact that ¥, isa
Phillips perturbation'*?® with respect to H. This fact in
turn follows from the relative operator bound

V2, <const(H, + 1), (2.13)

which is a consequence of the operator inequality
3,4 Q2 <(1/cy)Hy and the boundedness of

28X Y (M e Yy ():.

Remark: Actually, the additional quadratic term in
(2.11)is not necessary for (2.13) to hold"*; we are introducing
it at this early stage because we will need a quadratic coun-
terterm when the ultraviolet cutoff is removed.

Given feC&(T'XR)e C (T ' XR), set

o0

g f) = i ds e HNFAVN
ol w
J dx £, (x,s) (x)e™~ + AV, (2.14)
PE= Y [ dser i
ol
dx Fol,s) B (e)et ™A (2.15)
<P,,,_N(t)=e TN g gt N+ AV, (2.16)

Although these operators are densely defined as a result of
Theorem 2.4 it is not clear whether an arbitrary product of
them makes any sense. However, as in the Y, case the re-
ordering of an arbitrary product by 7'[ ]is defined on adense
domain containing the free vacuum £2 , , where 7'{ ]isunder-
stood to reorder the integrand of the multiple integral
involved.

The Matthews—Salam-Seiler picture of our model is
embodied in the following theorem:

Theorem 2.5: Let oeA ", yeA ", t > 0,
— /2Kt 08, <8 /2, and ., f
€18, €CE(T ' X R) & C&(T ' X R) such that the projec-
tions of supp f,...,.supp f, ,Suppg,,....suppg, onto the second
variable are disjoint, contain no ¢,, and lie in the interval
[—¢/2,t/2). Then

(e or[ ] Dpunted T 500 1 05 g0]e "7 0,.0,)
k=1 k=1 k=1

=+ [duip) T {een — 8y ex( —eu [

/2

—1/2

8 (m.sP ds)] 1T #0100 T detiuco omSonn £
=1 meA

(2.17)

where y is the characteristic function of the interval [ — ¢ /2,¢ /2], det, is the regularized determinant® for perturbations that

are Hilbert-Schmidt with respect to

Fr={feL AT XR) & LT 'xR)| | fI}.= 3

n= — oo

S is the operator on 7, whose kernel is given by (2.10),
S v=(1—ASyTxd,.)”'SyT, (2.19)
b (s)=¢ (m,s), (2.20)

and (, ) on the rhs of (2.17) denotes the inner product for
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) 1 R
do (" +0* + MY 3 | ulmo) < o), 2.18)

a=20

r
LY T'XR)je L} T'XR).

(2.17) is the Matthews—Salam-Seiler formula'* for our
cutoff model. Since the Fermi systems do not exchange fer-
mions, this formula is not surprising to anyone familiar with
the corresponding formula for the ¥, model. Moreover, the
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rigorous interpretation of the quantities on the rhs is exactly
the same as in the case of Y, with a similar ultraviolet cut-
off,'* except that the mechanism'' for cancellation of
poles is not needed in our case; (§,,,, ~Jfj:&x) 1s actually a
bounded random variable! More specifically,

Lemma 2.6: (S, &x)isaZ | /2., -MeEASUT-
able function on ./”'(Z" X R) (defined du-almost-everywhere)
and

(2.21)

|(§mw j!gk)|<M_I“fj”L‘@L’ 8illrzer:
du-almost-everywhere.

Proof: Since du is supported by the Borel subset of all ¢
such that ¢ (m,s) is a-Holder continuous in s, where we fix
a < 1/2, we may confine our attention to such ¢. By (2.19),

we have

Son =(=Vy + M —Alys,) ", (2.22)
where V,, denotes the ultraviolet regularization of
—/J’o o +B1 bx—l
which affects the periodic variable x, only and includes the
Fourier components { — N,...,0,...,N¥ }.
(Thus Sy =(—Vy +M)')

Now since 3,5, are Hermitian matrices and I is an anti-
Hermitian matrix, we know that — iV, — iAI'yd,, is an
{(unbounded) self-adjoint operator on

L3T'XR)e L*T"'XR). (yé,, is a bounded perturbation,
since we have assumed ¢,, to be continuous.) Hence

=Yy +iM — ikl xd, ) fllrrar:>M N fllLiar:
and this imaginary translate of our self-adjoint operator has
dense range. It follows from (2.22) that §m_ ~ 1s a bounded
operator on our L ” space and that (2.21) holds.

To show that ¢—>(§m' ~ f8x) is a measurable function,
we define an approximating sequence in the following way:
foreach positiveinteger/, partition theinterval [ — ¢,/ ]into/
equal subintervals and replace y¢,, with the corresponding
step function based on evaluation of ¢, at, say, the right-
hand endpoints of the subintervals. The operator .§m, ~.1 COT-
responding to such an approximation ¢ !, of #,, clearly de-
pends on ¢ continuously in operator norm (as an operator on
our L ? space) because the relative topology on the Borel set of
a-Holder continuous functions is just the topology for
pointwise convergence of nets (and therefore yé !, depends
on ¢ continuously in sup norm by the nature of the approxi-
mation). To prove pointwise convergence of S'Vm, ~ to S’vm, ~ as
I— «, we need only note that

(S f1:81) = (S f:81)]
= (S, v AXD s — AXB, S f 81 )]
<M*I|/1|||(l’¢[ —X9..)S, me”L’eaL’”gk”L g2

[since (2.21) clearly holds for Sm, ~.1 as well]. The uniform

convergence of y¢ !, to yé,, for a fixed, arbitrary a-Holder
continuous ¢ completes the proof.

Notice that the vital ingredients of the proof are that the
interaction is pseudoscalar (i.e., /" is an anti-Hermitian ma-
trix) and that du is supported by continuous ¢. This lemma
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will be the key to our vacuum overlap result as well as to our
semiboundedness result.

Although the analysis involved in proving Theorem 2.5
is the same as that employed in the proof of the parallel result
in Ref. 14, the combinatorial aspect of the proof is not quite
trivial. Since this difficulty makes the proof of our theorem a
notational nightmare, we will follow the expository spirit of
Ref. 14 and merely illustrate the basic argument by proving
the following (more modest) theorem.

Theorem 2.5": For ¢ > 0,4 real,

(e—t1HN+AVN)ﬂA,QA)

dul(é) I;[/1 {dety(1 — ASyT4,,)

X exp( — :N J‘:,[: é (m,s)zds)].

Proof: Since V), is a Phillips perturbation, we know by
Theorem 3.1 in Ref. 14 that the Phillips perturbation expan-
sion ofe ‘¥ *¥¥is convergent in operator norm. Now the
nth order coefficient of the resulting power series in A for the
lhs of (2.23} is

(—l)"jdt, J_

X H (Ve I,H‘\)-QA A2, ),

/=1

(2.23)

! —{f ~ — =t H
dt,,(e (t—1 JH oy

which can be rewritten as follows:

— (/72 + s )Hy
(_l)nj d’s (e (172 + s\)H
— /28 K S, <t /2

% (fI (Ve*(X/.I*S)Hv)ﬂA’nA’

=1
where s, , ; =t /2 and the change in integration variables is
given by
s,=t/2 —t, — . —1t,,1<n.
Applying (1.10), (2.11), and (2.12), we get

(—1) J d"s
— t/2<Sy s, <t /2

XJ xS (o= 72+ lHn+ e Zpen @3
|[xA<m

geA "

n _ . 2
% H (Qame (5701 s/)(HB+CEm6AQm))‘QB,ﬂB}

=1

1
— (/24 5) B a HE
X(e H 2

=1 \aa =0

Xra'/'(azv (x/):e ™ (s’*'ws”z"'“”g"’)

1/,10(/)) (x/)

X & 04, e .()""') (2.24)

meA

where we temporarily drop the subscript of ¢, for conve-
nience. The fermion factor splits into

1
rrll;[A (/501]1"1] (a a’ =0
— (¢, — SAH ¢

s e Jar.ap)
where /m denotes the successor of ¢in o~ '(m) and the opera-

tor product is taken in the order of increasing .

(e (172 sAZmenHl * has disappeared by application to the oth-

e (x,)
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er side of the inner product, and we have used all available
commutativity to telescope exponents.) By Theorem 2.1 the
boson factor can be replaced by

du() [] #(010)s )l Tirsoimer
=1

and by formula (2.9) the mth fermion factor can be replaced
by

det o tpm (1 — 8 )
a0 (m)—{01}

X [SN((xj’sj)!(xk SO ]a)a,"
where the structure of the matrix makes the determinant
independent of the ordering of 0~ '(m). Thus (2.24) becomes

(—1)"J d"sf d"xEJ-
— 25K K8, <t /2 IxA<® oeA

X duié) H B (010),5, )¢~ e Turat ) ds

X 2 E H det;kea '(m)(l )

a,=0 a, =0 meA
X [Sl0x 05 )i sse M ]apk'
Now since the s-integrand involves a summation over all
oeA ", it follows via arbitrary permutations of variables in

the x-integration and a-summation that the s-integrand is
symmetric in sy,...,s,,, S0 we may replace

(—1)"f d"s with (= d’s.
— /285, K8, <1 /2 H! 15A<1/2

Now for convenience set

4,($,0)
1 1
= d"s f d'x y -
-Il-s,l <1/2 ixA<m a.2=0 a,,z=

— CZ e S 2 20 (mys)? ds

n

I:[ (0(0),s,)
Xe

X H detj,kea"(m](l - 6jk)

meA
X [SN((xj’sj)’(xk Wi ))r ]a/x,
so that our expression becomes
{{—1/ntsduid) 2 __, -A4,($,0). Consider the mapping
A "—={0,...,n}" deﬁned by

o)m) = lo~ (m)|

and notice that if 7(o) = 7(¢’) then o can be transformed into
¢’ via a permutation of {1,...,n}. But in the expression for
A, (¢,0) such a transformation to ¢’ amounts to a permuta-
tion in the integration and summation variables. Thus

mo')=A4,(,0) = 4,(4,0'),
SO our expression may be rewritten as

= fqu»)m »

A—{0,...,n}

o) =

17-_ l(K”‘An (¢’ax)’
where o, is a representative element of 7~ '(x}. Since
nY/ [T «{m) «m)=n,

I~ (&) = ,IEIA ,Z’A

0, otherwise,
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_ ( _ l)x(ml
(2.24) = j ZONNN | St

> xim)=n

meA

“Jaer 3 (1 (—#)f

> «im)j=n

meA

SRR 11,00

a, =0 a, =0 meA | ko)

(.0,)

X det ) [Swl(s 8 xS I T o, }

Jkeo, '(m)(l —& k

Xe ™ e af 7% 2 ds ¢ (mus)?

But the [ du(d )-integrand of this last expression is just the
nth order coefficient of

(s [IREI LS e

1 1
X z z det; jucq(l

a, =0 a,=0

8 1) [Swllx .5, e s ]a,,k)

>< e’ CEmeAf'/Z:/z¢ (m,s)* ds

’

and the mth factor is the Fredholm expansion®*-*° of

dety(1 — ASyIyd,.), (2.25)

so we have now established the desired equation (2.23) for-
mally. To establish it rigorously, we must show that the
Fredholm expansion

g (_—_"LJ a’"sJ d"x [ ¢(m.s.)
n=0 n! [$4wt/2 [x s 7 /=1
X3 -

a, =0

X [SN((xj’sj)’(xk)sk ))r ]a,a,,

1
2 det; ..(l — 5 i)

a,=0
(2.26)

converges in L ?(du) for 1< p < «. [Obviously this will also
establish that (2.25) lies in L ?(du), so that the rhs of (2.23)
makes sense.] At this point we must interrupt the proof of
our theorem to discuss a serious gap in the proof of Theorem
3.2 in Ref. 14 and show how it can be filled.

By a straightforward calculation it can be shown that
the Hilbert-Schmidt norm of

Km,NESNrX¢m (227)

as an operator on ¥ ;. lies in L *{du), so by the basic Fred-
holm theory (2.26) converges to (2.25) in the du-almost ev-
erywhere sense. To obtain the stronger convergence one
needs a stronger property in order to exploit the hypercon-
tractive properties of du; e.g., it would help if K, y were
trace-class. However, we do not know whether the trace
norm of K, v lies in any L "(du), or even whether K,  is
trace-class in the du-almost everywhere sense. Moreover, we
do not see how to prove that the corresponding operator for
Y, is trace-class as it is claimed to be in Theorem 3.2 of Ref.
14. The point is that the regularization on the time-zero Fer-
mi fields induces a regularization on the Euclidean Fermi
propagator with respect to the space variable only (see formu-
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la {2.10) in the case of our model); there is no ultraviolet
cutoff with respect to imaginary time, and the method in
Ref. 12 for proving that the appropriate operator is trace-
class seems to depend on having an ultraviolet cutoff in all
directions. Actually, the K operator that Seiler and Simon
work with in Ref. 14 is trace-class anyway, but it is defined
by the wrong Euclidean Fermi propagator (see Remark 1
after Theorem 3.2 in Ref. 14). Evenif K|, , is not trace-class,
however, the argument in Ref. 14 involving wholesale ex-
pansion in powers of A is basically suited for our case as well
as for theirs; one only needs more delicate estimates. We
introduce these estimates within the context of our model,
but they are virtually the same as in the Y, case.

Since ¢, (s)eL ?(du), 1< p < «, an easy calculation
shows that the Hilbert-Schmidt norm of X, , with respect
to L3T'XR)® L*T"'xR)isalso in L *(du). Hence
det,(1 — AK,, ) is well defined du-almost everywhere with
respect to L (T X R)& L (T' X R) and certainly coincides
with its definition with respect to ##°. Since it does not mat-
ter which Hilbert space we use, we choose to work with
L*(T'xR)® L *T"'xR)becauseitismoreconvenient. Let D
be the positive operator defined by

D 2 : d_2 + MZ

- dt? dx? ’
and set

D (w,n)=(’+n* + M?)'2.

For 1< p < o we denote the class ¢, norm with respect to
L3T'XR)e LYT'XR)by || ||,. We have:
Lemma 2.7: (Rosen) For € > 0,€’ > §,
t/2
Gmls)’ ds,
/2

1Dk, oI = constJ- (2.28)

—t
t/2

1D — <K, x| < const f (2.29)

—t/

$m(s) ds.
2
Proof Fore>0
1D~ K nllz = TrxdnD ="~ *hyxdom,

where A, is multiplication in momentum space by the char-
acteristic function of §{ — N,...,0,...,N ] X R. This follows
from the relation

S1.Sy =D ~2hy,

where 1 denotes adjoint with respect to
L*T'xR)®L*T"'XR).Theintegral expressionin momen-
tum space is

N o0 o
DKl =2 5§ f do

X J do’ D (w,n)~ '~ *|yé,. (0 — )%,

P

n= —N

X[ o’ g

(2.30)

f doD (w,n) ' 7%

Since the f< _ dw-integration yields finite constants and
5% . do' |x9,(@)* = §'7%, ;,ds @, (s, we have

769 J. Math. Phys., Vol. 23, No. 5, May 1982

t/2

|D'*~<K,, x||> = const J

—t/

ds ¢,,(s).

To establish (2.29) we try to write D ~ “K,,  as a product of
Hilbert~Schmidt operators. Let {eC §(R)such that{ = 1 on
[—t/2,t /2] and set

J=D ~<S,(D°,
L=D I'yé,,

where a > 0 is to be chosen. Obviously D ~ <K, , =JL;
moreover,

IJ12 = TeD4D =2~ *hyiD®
by (2.30), so we have

N L)
Wiz=2 > X

n= —Nn= —w

XD (@,n) "2 *|€ (0 — w)|?8,,

2 %

n= —NJ —

X f do' D (w',n)*|{ (' — )|~

dw J do' D (0',n')*

00

do D (w,n) %~

Since f decays faster than any inverse polynomial, we know
that

J da)' D(wl>n)zal§(wl _ a))|2< COnSt,,(a)Z +M2)a
SO
N oo '
”‘] ”% <2 z ConSt" f da)(w2 + MZ)a —1-¢€
n= — N —w

because D (w,n)*>w* + M % Obviously ||/ ||2 < w if
a <} + €. Examining L, we see that

IL |z = Trxd,.D ~*x8,,

:zn:i ,:i, f, da)j” dw'D (w,n)

X |X¢m (m, - w)lzan'rx
=2 i fﬁ dwp(m,nrz"fdw'|X¢m(w')|2

=2 3 J_wwda)D(a),n)’Z”J’/z &, (s ds.

n= — oo ~ /2

The constant is finite if @ > 1. Such an a can be picked for J
and L if and only if € > §. Hence

1D =K nlE<IVIZIL 113
t/2
< const f é,.(5) ds

—t/2
for such €'. O
Since D°K,, » is an analytic family of operators, it fol-
lows from complex interpolation'? that for €<},

1K lly <UD =Kl =122 K, w12,

whereg~'=1—4rand r = 2¢'/(1 — 2€ + 2¢'). Thus,
Lemma 2.7 implies that

I sl < const |

—t

1/2

. G (s) ds=F(9),

provided that 0 < e<},€’' > 1. From now on we fix such €,¢’

(2.31)
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(and therefore ¢) with € < (and therefore g < 2). In particu-
lar, ||K,, v |l, < oo du-almost everywhere, so by the theory of
regularized determinants®® det,(1 — AK,, y)isentireinA du-
almost everywhere and we have the bound

|dety(1 — 2K, v)|< exp(C |2 [*]| K, n1I5)

for some C> 0.
Corollary 2.8: (Rosen) (2.26) converges in L ?(du) for

1< p< oo
Proof: Since det,(1 — 1K, v )isentirein A, we may write

i a, A",

n=0

(2.32)

dety(1 — AK,, ) =

where
a, = —1- d det,(1
nl di"

_A'Km,NHA:O'

The Cauchy formula yields
L dety(l = 1K) .
2w da - An+l!
By (2.32),
la,|<R ~"exp(CR K, ni});
soif weset R =n"4||K,, v|l,7', we have
|a, [<n ="K,
By (2.31)
1Ko ll; <Fid)?,

so by hypercontractivity

(o)’
w5 [ 1Kl n)
(

An/qun J.Fpn/z d,u) P

<n“"/"e':"[(£’i - 1)<JF2d )I/Z]n/Z >2,n>2
2 ,lL ’ P k= &y

because F (¢ ) involves the square of ¢. Thus

( J 2,17 du)l/p< const™n = "4(( pn/2) — 1y
® < const™n "9 p/2)"*n"?
for p>2,n>2. Since g < 2, this estimate yields an infinite radi-
us of L ?(du)-convergence of the power series for p>>2, and so
we have such convergence for p> 1. But the series is just
(2.26).
This completes the proof of Theorem 2.5'. O

”n nC‘

3. SEMIBOUNDEDNESS AND VACUUM OVERLAP

We now proceed to show how the ultraviolet cutoff is
removed. Our basic approach is very similar to the Seiler-
Simon approach'* to the Y, model, except that the absence of
a Reeh—Schlieder theorem in our case compels us to use
methods that are (apparently) peculiar to the pseudoscalar
character of the interaction in our model.

Lemma 3.1: There is a dense subspace D of 5%, with
the property that for every neD there exists a C > 0 such that

(e—'(HN+1VN)17”7)<C (e_'(H,V+}*VN).{2A '{)A )
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for all NeZ™*, t> 0, where {2, is the free vacuum.

This lemma is the analog of Theorem 5.4 in Ref. 14. To prove
it we must consider a modification of the type of states (Jost
states) used in Ref. 14.

Consider vectors in 5, of the form

ﬂ (eilkHOQMk) e — it,Hy )

k=1

x [ (e ¢ UE,) e

it’fk”ﬂ)
k=1

' i ’ Hein Heo
x [ (" o N Gide, )a,,

k=1
where H,, is the free Hamiltonian, oeA ", o'eA ”,
vil,..r}—Z" F,,... F,, G,,..G,€C*(T') & C =(T"), and

wG1= S [ Gaoourin) ax,
vE=S [ Faw e d

By cyclicity of the vacuum for our free model, the set of
linear combinations of such vectors is a dense subspace of
# 4. Clearly, if we consider arbitrary C & functions £ ,....,,
on R, then the expression

[T "“uiQule ™" I (e N (FJe ™" ")

k=1

XfI(e_

k=1

- an¢ld(k ”(Gk )e — ity 4 oy adlo )eilr +nentls

(3.1)

1s a product of bounded operators only. (5 (@) is under-
stood in the sense of the functional calculus.) Moreover, arbi-
trary linear combinations of the application of such products
to {2, from a dense subspace of #°, because Q,,,, can be
strongly approximated by a sequence of operators like
$i(Qyx))- Also, (3.1) remains bounded if ¢,,...,., , ,, , - are
replaced by complex variables z,,...,2, , , .  such that
Im z,>0 and Im z, <Im z, , |, and this operator-valued
function is strongly analytic in each variable on the interior
of this domain; this follows from the fact that H, is bounded
below.

Theorem 3.2: Consider all linear combinations of vec-
tors of the form

ﬁ (e ™" Q) Je™™) 1_"[ (et W(Fk Je )

k=1 k=1

x [[ (= gesnG e ), (32

k=1
where s, <s, , . The linear space is dense in 7%, .

As in the case of Lemma 5.2 in Ref. 14, the proof consists of
pointing out that the orthogonality statement for a candidate
vector with respect to all the vectors (3.2) is just the state-
ment that the analytic functions defined by the inner product
vanish on determining sets; this implies that the candidate
vector is orthogonal to the application of all the operators
(3.1)to £2,, and so the candidate vector is zero by the density
of linear combinations of such states.

Corollary 3.3: Let D be the set of all linear combinations

Guy A. Battle Ill 770



of vectors of the form

ﬁ (e_skHogk(Qﬂk))esﬂn)J ds, 1 J_ ds, , 2n

k=1

s [T (™™ 7 fifes, 1)

k=1
o
4 esr + xHo (e T Srsns kH°¢(°’(k )1}
A,

X (8ils 4 m vk ))ET N2, (3.3)

where y:{1,..,r] >Z", geA ", a'eA ", £ ,....£,eC & (R),

S 8158w ECT(T ' XR) & C (T ' XR), 5,20, 5, <5y, |
for 1<k <7, and (denoting the projection of 7' X R onto R by
)

5, <, SUpp fi <<, Supp f, <, suppg, <<, supp &n-
Then D is dense in 577, .

Vectors of this form are the “good Jost states”'* that we have
decided to use because we can show that the dense subspace
D works for Lemma 3.1. We need a Matthews—Salam—Seiler
formula for these states.

Theorem 3.4: With the objects introduced in Corollary
3.3, set 7 = (3.3). Then for t> 0

(e_t(HN+X-VNL'7’77) = | dug) H [detz(l —AK, x)
]

o e[ o)

X 11 6upofon +40)

X H ;k(¢7{k]( — S — %t”
K=1 - .
X I;IA detj.kea"{m)\/a’"(m) (Sm,ijgk),

(3.4)
where V denotes adjunction,
- [f}.jeo" M m), {gk“‘,kecr"(m),
T gy oot m), F T LS ke = (m),

SExs)=flx, £ (s + it ))}’
and the y that occurs in the definitions (2.19) [and (2.27)] of
.S:,,,, ~ and K, ., respectively, is the characteristic function of
(t/2,t /2]

Given Theorem 2.1, the proof of this theorem does not
differ significantly from the proof of Theorem 2.5. The sup-
port of y and the displacement of the test functions arise
from the fact that the good Jost states are generated by free
propagations: the relationship of the time-ordering to the
Matthews~Salam—Seiler picture causes the test functions to
be supported outside the region of interaction.

Proof of Lemma 3.1: By the Schwartz inequality we
may assume that €D is a good Jost state instead of an arbi-
trary linear combination of such states. Thus, with = (3.3)
we apply (3.4} to obtain

(e~ v+ Yoip )< 151 AL jd#@s ) ’IEIA [detz(l —AK,. ) exp( —cy ﬁ/; $mls)? ds)}

k=1

X H ldetj,kea l(m;vg’*‘(mi(svm,Nf‘-j’g-k”’
meA

where the positivity of det,(1 — AK,, v) follows from Seiler’s reasoning.' Applying Lemma 2.6 we get

(e "+ )< I @lo™ tm)id =" T UGS T (1 fcllesorsligellzeoe:
meA K=1 K=1

t/2
X | duié) [T [det2(l —AK,, v exp( —cy f .15 ds)] = constfe "0 0). O
meA —t/72
Theorem 3.5. Let
/1 2
H,y=Hy +AVy — > > | TelKn + K nKow) du, (3.5)
meA

where Tr denotes the trace for operators that are trace-class
with respect to &7, and set

A? X J' * d 1
Cpny = = ) ———
N 417',,:21,\/ e w4+ nt+M?
in the definition (2.11) of H,,. Then there is a C> 0, indepen-
dent of A,z,N such that

(e~ "*2,,02,)<C 1A,

Given the Matthews—Salam—Seiler formula (2.23) for our
model and the checkerboard estimates of Sec. 2, this theorem
follows from the estimates of Seiler—Simon'? adapted to our
model.

Remark: Obviously ¢, — o0 as N— w0, and this constant
is the shift in the spring constant for each harmonic oscilla-

(3.6)
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-
tor (i.e., shift in the square of the boson mass) that contrib-
utes to the ultraviolet renormalization of the model. An-
other counterterm is the last term in the definition of H , y;
this constant is the energy shift that completes the renormal-
ization, and it diverges as N— oo because the Hilbert—
Schmidt norm of

K, =S¢, (3.7)

does not lie in L %(du). We should also note that by the meth-
ods of Seiler-Simon'? this cancellation of infinities can still
be controlled if ¢, is modified by the addition of a finite
constant. (For the energy counterterm such a claim is, of
course, trivial.)

Theorem 3.6: H, ,, converges in the strong resolvent
sense as N— oo to a self-adjoint operator H , bounded below.
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Proof: Given Lemma 3.1, Theorem 3.4, and Theorem
3.5, this theorem follows from exactly the same reasoning as
in the proof of the Y, result in Ref. 14. a

Corollary 3.7: For every neD there is a C > O such that

(e tHA"?r"?KC (e tHA-QA 124)

forall > 0.
Proof: According to Lemma 3.1 the constant C is inde-
pendent of ¥, so the corollary is immediate. a

Theorem 3.8: E, =inf spec H, is an isolated eigenval-
ue of H, with finite multiplicity.

Proof: This result follows from the adaptation to our
model of the regularizations, first-order operator inequal-
ities, and operator resolvent arguments of Glimm and Jaffe
in their treatment of ¥,.'° We do not know whether E, is
simple. O

By the same reasoning used in the proof of Lemma 5.1
of Ref. 14, it follows from Corollary 3.7 that {2, is not or-
thogonal to the space of interacting ground states for a given
volume A. More precisely,

Theorem 3.9: Let P, denote the projection of 7%, onto
the eigenspace of £, . Then P, 2, #0.

This theorem is the desired vacuum overlap result.

We also have a Matthews—Salam—Seiler formula in the
ultraviolet limit N = oo.

Theorem 3.10: Let oeA ", yeA ', > 0, — §t<ty,...,8, <4t,
oo Sor 810 8n€ECE(T'XR)® C&(T ' XR), and for arbi-
trary feC (T 'XR)® C & (T ' XR) set

wif)= [ as [ ax 3 sl e 08

a=0

V= [T s 3 s e
39
D, (s) =e~"Q, " (3.10)

Assume that {¢,},...,{¢,},
5 SUPD f1s--»72 SUPP [+, SUPD &15--- 72 SUPPE,, are disjoint

and containedin[ — ¢ /2,t /2]. Thenwith @, ,, ¥ 7", W'}V"' ,
and ¢, given by (2.16), (2.14), (2.15), and (3.6), respectively,

(ef(r/zme[ I 2ot T1 AN £
K k=1

X 11 ¥ T‘v’“’"(gk)]e" A, ,HA) (3.11)
k=1
converges to
(7 T @uuten) T #0120
k=1 k=1
(3.12)

x 1 ¥ gel]e " "0,0,)

k=1
as N— o« . Moreover

exp[ >

meA

x [ dui6) ] {detsll = 1K)

meA

X exp(— Cy f”;qﬂ S)ZdS)} H B iy (1)

TR S+ K Kol
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X H detllkea ‘(MJ(§m,N j’gk) (3.13)

meA

converges to

f duig) [ {dety1 - AK,,)

Xexp[- . +KI,,K,,,):”

X H Sy () [ detkeo '(m)(s S8x) (3.14)

meA

as N-» oo, where K, is given by (3.7),

S, =(1-AK, )" 'ST, (3.15)

: : denotes Wick ordering with respect to du, and det, is the
regularized determinant for operators that are class C, with
respect to # .. Thus, by (2.17) we have (3.12) = (3.14).

The convergence of (3.11) to (3.12) follows from Theo-
rem 3.6, while the convergence of {3.13) to (3.14) follows
essentially from the estimates of Seiler [11] and of Seiler—
Simon [12]. (It should be noted that

t/2

. (s)" ds.)

2

2T K = f

—t/2

It is worth mentioning that:
_ Lemma3.11: (S, » "8k )} %o converges to
(S, f}:8) pointwise on the Borel set of a-Holder continuous
#. Thus (S, f,.g«) is a random variable and

|(§m fj,gk)|<M’]”f”qu»L*”g”L’@Ll

du-almost-everywhere.
Proof: Clearly

}(gm,zv j’gk) - (§m fj’gk)l

= ‘(gm,zvr(vzv - VS, fj’gk)'

<M ‘l“(vN - VS, fj“L’esL* |lgx 20
and

S, =(=V+M—TIx$,) '
is a bounded operator by the same reasoning as in the proof
of Lemma 2.6. Since the range of S,, is the domain of V and
V»—V strongly on this domain, we have the desired

convergence. [
By the dominated convergence theorem it follows that

_ Corollary 3.12: (S 8x)} % = o converges to
(S, f;,8x)in L Pldu) for 1< p< 0.

(3.16)

The point of this corollary is that the L ,(du) convergence of
the density

2
exp[/l—z— f Tr(K 2y + K] vK

x 11 [det2(1 —AK, »)
meA

m) du]

t/2
X exp( —cy J ds ¢, (s)z)} (3.17)
—t/2
to the density
I1 det...(1 — AK,,)= [] {det;(1 --2K,,)
meA men
X exp[ - —i—ﬂ.%Tr{K?n +Kf,,K,,,):” (3.18)
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immediately implies the convergence of (3.13) to (3.14), so
some of the work usually involved in proving a result like
Theorem 3.10 could be avoided in our case.

Remark: In view of Corollary 3.12, one might believe
that our model is “purely bosonic” in some sense, but this is
probably not the case in the infinite volume limit. We cannot
prove that (S, f »8x)isarandom variablein the = oo limit.
The point is that du is not supported by the set of continuous
¢ such that ¢ (m,s)—0 as s— 4+ .

Finally, it follows from Theorems 3.9 and 3.10 that:

Corollary 3.13: With the objects and assumptions of
Theorem 3.10,

(7 J1 @uote) T #7150 1 v g )| 2,0, ),

= lim (e~ “"2,.,2,)7'(3.12)

t—+oc

= lim[ il detren(l—le)dp]fl(3.l4), (3.19)

— o0

where 2, =|P,2,| " 'Py02,.
Remark: That the partition function

ZA;I = H detren (1 - A’Km) dlu‘

meA

= ""0n,0,) (3.20)

does not vanish follows from Seiler’s reasoning.'' Equation
(3.19) is, of course, the Euclidean Gell-Mann-Low formu-
la,'® which is a standard consequence of vacuum overlap. It
expresses interacting vacuum expectations as thermody-
namic quantities involving the free vacuum.

4. 0S POSITIVITY, FROHLICH BOUNDS, AND NON-
RELATIVISTIC WIGHTMAN AXIOMS

We now have the finite-volume noncoincident (with re-
spect to imaginary time) Schwinger functions (Euclidean
Green'’s functions) for our model, and we denote them in the
following way:

Clearly, all of the results of the previous sections are
preserved with respect to the replacement

—t/2— —t',t /2—t,t—t + t'.Withtheobjectsandassump-
tions of Theorem 3.10 and with this minor generalization in
effect, we set

Sp;— o f&OTV=Z 0, T (3.12), (4.1)

where f,g,7 denote the strings (f},..., £, )s (€15-s&n )s (E1see0st))s
respectively, and y(k ){o(k )) is the lattice site associated with
t, (f and g,). It follows from our Matthews—Salam—Seiler
formula that

SA; - l',t(f;g’o-;TYY) = ZA;r +e 1(314) (42)

S 4. _ 1. /,8,0;7,7) is the partially smeared Schwinger func-
tion for n fermion-antifermion pairs (at o-selected sites) and »
“bosons.”

Theorem 4.1: Consider 2/ strings of test functions:
Fi=(fir0 [in W <J<L fCH(T' XR)® C (T ' XR),
G =g 18 ) 1< j<Lg 4€C&(T ' XR) & C&(T' XR),

and / strings of real numbers:
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T,=(t), ,...,tj,j),1<j<l,

where the sets 7, supp f ;.7 supp g, {2 5 } are disjoint and
contained in the interval [ — z',¢]. Let A,...,A, be rectangu-
lar subsets of Z” containing the origin differing only in a
given direction, and denote the common coordinate-zero
subrectangle by A . Let

o;:{1,..n; J—A oy p{Leari—A
where A ;- denotes the strictly positive part of A ; with re-
spect to the given direction. Let 6 be the reflection of Z”

through the plane that separates A ' from the lattice sites that
are positive with respect to that direction. Then

!
z ZA ;S uea j*;—t’.tSA FUBA fi— 't
Li=1

(F,VF,,GNG 0.V 00 ;7N 71,y Voy,)>0,
where V denotes adjunction of strings.
This theorem is essentially the statement that our model sat-
isfies OS positivity>®!* in the spatial directions, and the
proof follows easily from (4.2). The point is that the only part
of the interaction that couples lattice sites is du, which is
certainly OS positive.?'*

Remark:If A, = ... = A;=A, then
A }ubA - =A TUbBA T and we have a more familiar state-
ment of OS positivity. We have stated this slight generaliza-
tion because such a version is implicitly used in the Seiler—
Simon derivation'* of Frohlich bounds and we intend to ap-
peal to their reasoning.

Theorem 4.2. With the same objects that were intro-
duced in Theorem 4.1, except that @ is no longer a lattice
reflection but the reflection of R, assume that

{tjl }""’{tjr_,-}’ﬂ-z Suppfjl P suppj},,l_,
7, SUPDPg j15.-+»72 SUPPE,, 5,
c[0z;],
where ¢,...,t; >0. Let A; = . = A,=A and require only

that the ranges of o',y ; lie in A. Then
{

Z ZA;—!,,ljSA;ft,.tj(F/V 9Fj,

F=1
G,V 6G;,0, Vo ;
7.V —7,7 V7,20,

where 0 F,=(6f},....0 f;, ) and (6 f )(x,s)= f (x, — 5).
This result states that our Schwinger functions satisfy OS
positivity in the imaginary time direction, and it follows
from elementary manipulations with the expression that
{4.1) yields for such a combination.

A consequence of these OS positivity results is that the
Euclidean pressure exists.

Theorem4.3. o, =lim ___ (1/t|A |} InZ,, exists if

A— oo through rectangles.

The point is that InZ , , is convex in ¢ and in each dimension
variable of the rectangle A by virtue of OS positivity. Thus,
the theorem follows immediately from the general convexity
lemmas in Ref. 14 (Lemmas 6.3 and 6.4} and the linear upper
bound on InZ ,,, furnished by Theorem 3.5.

Theorem 4.4. With the objects and assumptions of
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Theorem 3.10, there are constants C,,C,,C, > 0 dependent
only on the model parameters, such that

ZA;I' + ¢t |SA; — l’.l(j;g’a;T’y)t
<CPIrICICL [ trm )"
m,/

X kﬂl (1l = 128 ll =12, {4.3)

where r,,, denotes the number of & ’s such that /<¢, <+ 1
and p{k ) = m, and

”f“zﬁﬁEJ‘ dw i (/2+w2_+_M2)7/3
C ;L

N

X 3 |futball (4.4)
This result is just the adaptation to our model of the volume-
divergent bounds obtained by McBryan®? and by Seiler-Si-
mon'? for the ¥, model. Given the checkerboard estimates
for the lattice directions (briefly discussed in Sec. 2), the
proof of this theorem may be patterned after either the
McBryan proof or the Seiler—Simon proof. It should be not-
ed that although the lattice checkerboard estimates essen-
tially reduce the problem to that of a single lattice site (be-
cause the fermions do not couple lattice sites) the actual work
is no easier than in the case of the Y, model. The Euclidean
boson field at a given lattice site depends only on imaginary
time, but the Euclidean fermi propagator is still two-dimen-
sional (albeit periodic in one direction) and the renormaliza-
tion problems are unchanged.

Theorem 4.5: With the objects and assumptions of
Theorem 4.4, let {¢, }, m, supp f;,7, supp g, lie in the inter-
val [ — t,/2,t,/2] and assume that the ranges of o and y lie in
the box A,. There is a constant C, > 0, dependent only on the
model parameters, such that

‘lim ISa; i s2,012( £807Y)] <6'1A°|'°C;C§

XL )" TT (el <12l -1 (5)

where C,,C, are the constants C,,C; of Theorem 4.4.

These bounds are Frohlich bounds.'*?* As in the proof of
such bounds for the ¥, model,' the basic ingredients of the
proof are OS positivity in both spatial and imaginary time
directions, volume divergent bounds like (4.3), and control
over the energy difference between volumes. At first glance it
might appear that we are in trouble because Seiler and Simon
have controlled this energy difference by an argument that
seems to depend on Nelson’s symmetry. However, the con-
vexity lemmas (Lemmas 6.3 and 6.4 in Ref. 14} give us con-
trol over such a difference, and indeed Seiler and Simon ar-
gue precisely this way in the proof of a later theorem.
Equation (4.5) is not enough to prove that the noncoin-
cident (with respect to imaginary time) distributions one ob-
tains for the infinite volume theory are tempered. The usual
argument involving a partition of unity is ruined by the fac-
tor C ¢ if C, > 1. In the Y, case Seiler and Simon show that
the constant C, = 1 works for the Fréhlich bounds in the
A = Z" limit by showing that the constant C, = ¢”~ works
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for the volume-divergent bounds. However, their proof de-
pends on the Euclidean Reeh-Schlieder theorem, so we can-
not duplicate this refinement for our model.

Although we cannot prove that our infinite volume
Schwinger functions will be tempered for arbitrary coupling
strength A, we can certainly prove both uniqueness and tem-
peredness for the weakly coupled model.

Theorem 4.6: If w, '|A | and M ~'|A | are sufficiently
small, then with the objects and assumptions of Theorem 4.5
we have

(@ lm,  _ Si 0. 0(f80:77)=S(180;7,7) exists.

>oe

A-» o0
(b) There are constants ¢,,c, > 0, dependent only on the
model parameters such that

|SA; — 1/2.1/2(.’;8’0';7-’7/)'
<eje; II("m/!)I/2 H (LSl = 1218l = 1/2)-
m,/

k=1

(@ Let@{L,..n)Z pif L, 1} T,
t,-.t,€R and fi,..., fi .8 185 )
eCy(T'XR)e C(T'XR); then |S(fV f'gVEaVa;
VT Y VY = S80S (£.8:6:7,
<ce ™ “for all £ >0, where f (x,5)= f, (x,s — )
and 7,=(¢, — t,....t; — ).

(d) If € is a unit coordinate vector for Z*,

IS(fV figVEaV TV EYVY,)

— S(f80;mY)S (£.£,6.7.7)]

<ce "%/ for all jeZ™,
where 7 ;(k )=6(k ) — €.

This theorem can be proven by an adaptation of the Y, clus-
ter expansion?!*? to our model. We omit the proof because it
differs in no significant way from Refs. 21 and 22. Obviously
the expansion would be modified in the spatial directions by
the fact that the fermions are already decoupled and the bo-
sonic part of the model is lattice-like with a nearest-neighbor
coupling. Part (b) of the theorem, which implies that our
infinite volume Schwinger functions are tempered, follows
from estimates on the cluster expansion—at least if we pat-
tern our expansion after Magnen and Sénéor.** Unlike Mag-
nen and Sénéor, Cooper and Rosen?! appealed to the Seiler—
Simon and McBryan results instead of explicitly deriving
temperedness estimates from their version of the Y, cluster
expansion, but such estimates should follow from a detailed
inspection of their convergence proof.

Corollary 4.7: If o, '|A | and M ~'|A | are sufficiently
small, then the infinite volume Schwinger functions satisfy
all of the unEuclidean OS axioms including exponential
clustering.

Combining parts (a) and (b) of Theorem 4.6 with Corol-
lary 3.13, the general theory of Laplace transforms, and
standard Vitali arguments,®*® we obtain Theorem 1.1. In
view of Corollary 4.7 and Osterwalder—Schrader recon-
struction, we see that Theorem 1.2 immediately follows.

5. FKG INEQUALITY: SUFFICIENT CONDITION

The free boson measure that arises in our model is given
by the covariance (1.20). It is evident from the formula that a
boson lattice approximation of the model will involve imagi-
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nary time only. Thus, we set
afm= [ dssiims) dims) 650, jez,

),
(m,s) = dk
f;s’-’(ms) (277.)v+1 v
g ikem + iols — J8) oo ke V2 241/2
><f do 27 ok P + 02
et (28 71 — cosbw) + w(k)?)

where [s] denotes the element of § Z closest to s (with, say, the
left-hand convention if s lies midway between two successive
members of § Z). This lattice approximation is completely
analogous to the lattice approximation of the free boson
measure for the standard quantum field theories.'*'® It is
easy to see that

, 1 . s !
qu(m)q;'(m )d.u’z (217_)v+1 J-Tvd kj,,,.g 'dw
e

iklm — m') + ol j— J)

X »
26741 — cosbw) + wl(k )?
so we have the expected covariance for the new random
variables.

Now our strategy is to prove the FKG inequality for
our model with both the fermion ultraviolet cutoff and this
boson lattice cutoff in effect. In Sec. 3 we saw how the former
cutoff can be removed, so our regularization problem is re-
duced to showing only that the lattice cutoff can be removed
with the fermion ultraviolet cutoff in effect. The FKG in-
equality would obviously be preserved under successive re-
moval of the cutoffs.

Since the FKG inequality is a bosonic result, we may
concentrate on the Euclidean measure, which describes the
boson subtheory of our model. Fix a fermion ultraviolet cut-
off N and consider the corresponding interaction density:

p(¢ )E H {detz( 1 - ASNFX¢m )e — enf'7? yds ¢(m,:)3}’

meA
where the objects are those introduced in Sec. 2 and we are
suppressing the dependence of the interaction density on ¥,
A, and t. The problem is to show that if we define the interac-
tion density for lattice cutoff § as

po(@)= [T {deta(1 — A5, Ty )e ==~ orts¢"m)
meA
then there is a sequence {8, } such that §, 10 and p>*— p in
L ?(du) for 1< p < . Clearly, the following result suffices:
Theorem 5.1: For an arbitrary time cutoff 7, fermion

ultraviolet cutoff V, and lattice site meZ?, there is a sequence
{6, } such that §, 10 and

— o8 s  PHm,sp? p — eI s § (msf?
e N [7¢ N- t/. ,

det,(1 — ASyNyd 2} —>dety(1 — ASyT¥8,,)
in L ?(du) for 1< p< .

We omit the proof of this theorem because the basic strategy
is the same as that used in Ref. 1 for the lattice approxima-
tion of Y,. Indeed, the proof of Theorem 5.1 is simpler be-
cause we are working with a fixed cutoff on Fermi momenta.
Without this cutoff, each factor in the interaction density
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would be either zero or infinity and we would have to control
the cancellation. As it is, each factor can be handled sepa-

rately, and the momentum integrals to be estimated’ in this.
case are essentially one-dimensional®* and contain no ultra-
violet singularities that might complicate the derivation of 6-

independent bounds.
With this double approximation in effect, let 2J + 1 be

the (odd) number of random variables that we are effectively
considering at a given lattice site meA [i.e., (2J + 1)§ = ¢;the
variables themselves are labelled ¢ _ ,(m),...,go(m),...,q ;(m)].
The approximate measure is the measure dv on R4 1% + 1)
given by ,

dv(g) = H [det2(1 —AS, I Z )(jqj(m))

meA j=—=J
X e~ 0% ’q’{’"’l}e —eq) H dq ;(m),
m,j !

where y ; is the characteristic function for
[(j —46,(j + 481, ) denotes the inner product on
R+ 1 and disthe |A |(2J + 1)X |A |(2J + 1)matrix de-
fined by

A= —~A; + i, (5.1)
where 4 is the lattice analog of the (v + 1)-dimensional La-
placian'® (with -spacing in the imaginary time variable and
1-spacing in the space variables) with free boundary condi-
tionsonA X& { —J,...,0,...,J ]. Thissection and the next will
be devoted to proving the FKG inequality for dv. We must
prove

Theorem 5.2: Let f,g be increasing functions on
R+ 1 (in the sense that fg)< f(g') if ¢, <g’, for all j) such
that g, fg are dv-integrable. Then

(fg) — (f){g)>0,

where ( ) denotes the normalized expectation with respect to

dv.
Remark: By the same argument as in Refs. 1 and 18

(except that our fields ¢ °, ¢ are not smeared), Theorem 1.4
follows from Theorem 5.2 via the successive limits
6->0,N— . Asin Ref. 1, our approach to proving Theorem
5.2 lies in Theorem 1.1 of Ref. 1, which we state here for
convenience:

Theorem 5.3: Let WeC %(R") such that

FW /39,09, 0, j+k.

If f,g are increasing functions on R" such that f,g, fg are
e%'94 "g-integrable, then

(fz) — () (&)>0,
where ( ) denotes the normalized expectation with respect to
e¥idrg,

In order to show that dv can even be written in the form
suitable for this theorem, we must show that
det)(1 — ASyI" 2’ _ _,q,(m)y ) cannot vanish for any
geR1 P+ meA, Indeed we have

Theorem 5.4: 1 — AS,I"2’_ _ ,q,(m)y, is invertible
on 7. for all meA, geR!A &+ 1),

Proof: Let

= {veL *R) o LR)| o],
l o0
= zf dw(w2+n2+M%)‘“lﬁa(w)|2<w]
a=0+ — o
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and S be the bounded operator on #*? defined by the
kernel

n ’ 1 * ioks — lﬁ + lﬁ n +M
S( )S,S = f d eta}(s s’} oW 1 ] .
i 27 “ o +n*+M? (3-2)
Then
Ho= @ KW,

under the obvious isomorphism. Since the characteristic
functions y ; have no y- dependence, we also have

Sul S ea S‘"’I‘ Z L4 lmiy .
is =z

so it is enough to show that 1 — /{S‘"’F 2§= _sq;(m)y; is
invertible on 7. Now by the same calculation mentioned
in Sec. 2 we see that S"'I" 27 _ _ ¢ ;(m)y ; is a Hilbert-
Schmidt operator on #7Y, so by the Fredholm alternative it
suffices to prove that | —AS"I'2)_ _,q;(m)y; has zero
kernel. Since I" is anti-Hermitian, the proof is similar to an
argument of Seiler. ! a
It is clear from our proof of this theorem that

det)(1 — ASy 2/ _ ,,q](m),y,) splits into the product
MmY_ _, det?(1 —AS™I z q ;(m)y;), where det}” is the

q;(my ;= L

restriction of det, to #7. Slnce these factors are nonzero
and real (hence positive by continuity in A ), we may define

Wiq) = Z[ i lndet‘z")( —ASt 2 qj(m)xj>

meA LnZ 2 N je=y
o8 3 qm’| - tdgg)
so that dv(g) = ¥ 911, ,dg ;(m). We also have:
Lemma 5.5: W, (q)=In det'(1 — AS™I"
XZi_ _,q,(m)y;)lies in C'(R¥* ') and for —J<k<J,

ad 1
9w, =_a Tr"”( _ASUr S g .(m )
3a(m) PR

X S FXk ,
where Tr'” denotes an improper trace on #7 for which
Tr"S ™y, = 0.

Proof: For q in a fixed compact set and for sufficiently
small A, a standard computation based on the Fredholm ex-
pansion yields

W.nlg) = 2

where Tr'” is well-defined for each term because
S™rzy_ _,q;(m)y, is Hilbert-Schmidt. Partial differenti-
ation yields

J

dg,(m)
- Z/I’Tr‘"’ sr Z qj(m)xj

j= —J
by cyclicity of the trace. But the rhs is just the power series
expansion for

Tr"" sr 2 g,(my;

j==J

mon =

S (n) Yk
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—ATH"’[( —AS™r _qu,(m)x,)

XSy, —S"y. )
By analyticity in a neighborhood of the real axis, the result-
ing equation holds for all real A. Finally, although § "Iy, is
not trace-class, the properties of the Dirac matrices together
with (5.2) imply that there is a principal value of Tr'" for
which Tr"S ™y, = 0 (in fact, any principal value whose
cutoff preserves the matrix trace will do). O
It immediately follows that

Corollary 5.6: W, ,eC*R¥ *'), and for — J<k,k'<J,

W, ,/3q, (m3g,.(m) = — A 2Tr"S Wy, 5%y ,,(5.3)
where

su=(1

_asr ¥ g, (m)xl) ‘st

j=—J
= (1 —AS "Iy 3) ST (5.4)

Of course, Tr'" is well-defined here. Collecting everything,
we get:

Theorem 5.7: WeC3(R!4 ¥+ 1) and for
—J<kk'<T, Ll'eA,

W /3q (1)0gi-(I') = — Apyperans 1'#L (5.5)
and

F W
— = -4 . Tr"’S" S"" .
daclPge ) e T4 A3 eSSt

(5.6)

Our aim is to show that these second partial derivatives
are nonnegative for (k,/ ) # (k ',/ ). Now since the off-diagonal
elements of the finite-difference Laplacian A ° are positive or
zero, it follows from (5.1) that the off-diagonal elements of 4
are negative or zero. Therefore, it suffices to show that

Tr§ Wy, Sy, <0, k #k'. (5.7)

From now on we let Tr denote the trace on the Hilbert space
L *R) o L }(R). The arguments of the next section will show
that | —AS™I 2 _ _ ,q,(m)y, is invertible on
L*R)eL*R) and thatS'!" §"is Hilbert—Schmidt on this space.
Hence Tr § 7y, Sy, is deﬁned and

Tr‘"’S‘"X Sy =Tr Sy SWy..
Thus, our object in the next section is to show that
TrS"" S("’Xk <0, k#k'. (5.8)

6. FKG INEQUALITY: PROOF

Consider the more general situation:

Sss') = LJ dwﬁﬁii’ﬂz_ s =) peZX
27 J- W+ P+ M
(6.1)
where
"= 2 n/ﬁ/.

=1
and the matrices B,y,...,3,, I anticommute and satisfy the
properties

ﬁ;":ﬂﬁ ﬂf‘=1:
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r*=—-r, r’= —1,

where * denotes matrix adjoint. The standard real-valued
irreducible representation of this collection of Dirac matri-
cesisd, =21+ "2 dimensional, where [ ]denotes the least-
integer function.

By implication we are considering the same basic mod-
el, where the Fermi system at each lattice site is now a -
dimensional box in which the time-zero Fermi fields appro-
priate to that dimension satisfy periodic boundary
conditions.

Throughout this section we replace y¢ 3, with an arbi-
trary bounded measurable, real-valued function 4 with com-
pact support and the Hilbert space we use is

d,
#.= o LYR).
=1

Theorem 6.1: 1 — S I'h is invertible,
St=(1 — §"rh)~'S™

=<_ﬁ0%—m+M—Fh)il, (6.2)

and §"y is Hilbert-Schmidt for the characteristic function
y of any compact set.
Proof: By computation we have the explicit formula

S "(s,s")

s —s

= const((n2 +M?3)'28, + i + M)

5=
Xev(n:+M:)|/z!S_S‘|’ (63)

$0 S "(s,s')Th (s')is L > on RXR. Thus S"I'A is Hilbert—
Schmidt on 57, so by the Fredholm alternative, the first
claim is established if we can show that 1 — S I's hasdense
range. But

1——S""I‘h=S""(—B0-5— —iii-{-M—Fh)
s

on the domain of self-adjointness for i(d /ds). Since
i( — Bold /ds) — i — I'h) is self-adjoint on this domain and
M #0, we know that the unbounded operator
— Bold /ds) — ih + M — his onto.> S " is a bounded oper-
ator with dense range, so we have verified the first claim. The
second claim is algebraically evident, and the third claim
follows from the first claim together with the fact that S "y
is Hilbert-Schmidt for every such y. O
Our goal is to prove that Tr §*y, §")y, . is real and
that
Tr Sy S"y.. <0, k#k’,

where v,y are the characteristic functions of the preced-
ing section and the trace is taken with respect to 5#°,. The
quantity is well-defined by virtue of the preceding theorem;
indeed, the fundamental theorem®® for Hilbert-Schmidt op-
erators on L ? spaces yields:

Corollary 6.2: §™ has a measurable kernel S (s,s') that
is L2 on R XX for every compact K CR, and

Tr S, Sy, = st f ds' Y. (8 k- (5) tr §(s,s")S ™(s’s),

where tr denotes matrix trace.
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Therefore it is enough to show that
tr §(s,s)\§ "(s",5) <0
for almost all (s,5')eR X R.
We will be concerned with symmetries that will involve
the dependence of S on A and M, so we set
Sl=8 "
Now notice that since
Se, =(1=Syra)~'syr,
=SYr(1—aswr)-,
we have
SWh = —(1+ISYh)=' IS,
where T denotes operator adjoint on 7. Since

A'(s,s') = A (s',5)* almost everywhere for any bounded oper-
ator A that is densely defined by, say, a locally integrable
kernel 4,,(s,s"), it follows from (6.1) that

rsy*=syr,
SO

St = —(1+SYrn)7'syr= -84 _,.
Hence

St ss)*= —S% _,(s5), aa (ss)ERXR,
so the desired inequality becomes
tr S, (5,585 _ ,(5,5)*>0 (6.4)

for almost all (s,s')eR. Obviously this holds in the special case
h =0. For technical reasons we will now impose the condi-
tion heC 7 (R) and remove the regularization later. Note that

<_Boi_ir1+M—rh)(ﬂoi +iri+M+Fh)
ds ds
= — F +n2+M2+h2+Fﬁoh'-
S

is a self-adjoint operator on J#°, which is bounded below by
n®> + M ? because

d2

rs

(-0t -as+n)

+h*+ TR’

and
d
—Bo— —Th
[J’ods
d t d?
= —+Fh) on the domain of — —.
(Bods nthe n ds*
Let

G=(- % +wemroniegp)
The point is that

Sw. = (30% + i+ M+ Th )chr, (6.6)
while the matrix structure of C, involves only the self-ad-
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joint matrix I'f3, and the identity matrix. Unfortunately, if
we write down (6.6) in terms of kernels and substitute the
result into (6.4), we still do not have a manifest inequality.
However, part of our proof will involve the relation

S, —=SH =2 +M)C, T (6.7)

Lemma 6.3: C,, has a measurable matrix kernel C, (s,s’)
which is L > on R X K for every compact K CR. Moreover,
C,{s,5") is a positive matrix for aimost all {s,5')eR XR.

Proof: The first claim follows from equation (6.7) and
Corollary 6.2. Now since the second-order differential oper-
ator is a self-adjoint operator with a bounded inverse, basic
spectral theory together with (6.5) gives us the formula

— it —(dds )+ 0 - M2+ R4 TBh
Ch:J> dte {—{ )+ n B ),
0

where the integration is done in the strong operator sense.
Hence, there exists an improper § dr-integration with re-
spect to which

C,lss5)= J dt
0

% evz(n'+M’]e—1(~{d*/dr)+h*+Fﬁ‘,h')(s’sl)

for almost all (s,s")eR X R. Since there is a subsequence of the
Trotter product approximations

(e(:/k )(d’/d.e)e — (t/k)h? + [Byh '))k (s,sl) (6.8)

converging to e ~ {{ —9/4) + 42+ I8k g o) for almost all
(s,s)ER X R, the second claim is verified if we can show that
(6.8) is a positive matrix. But this can be seen by writing (6.8)
down explicitly as a multiple integral® because in the inte-
grand there are no anti-commutation problems interfering
with the combination of exponential factors into an expon-
entiated sum, and the resulting matrix exponential has a self-
adjoint exponent (so, in fact, we can prove a Feynman-Kac
formula for the semi-group, although we will not need such a
high-powered result). 0

Lemma 6.4: For each s'eR and positive integer ¢'<d,
there is a unique solution R_,.(-,s") in &, of the integral
equation

R 58— f ds” [Slss" ) 16" R 1o (575
e -_1

= [S5s8))ers (6.9)

R (s,5') = S ,(s,5') almost everywhere, and for eachs’, R (s,s’)

is smooth in s for s##s’ and
—Be -;i R (s,5") — idR (s,5") + MR (5,5') — Th (s5)R (5,5') = 0,
s

s#S'. (6.10)

Proof: By (6.3) we know that the rhs of (6.9) is L ? for
fixed s', so the invertibility of 1 — STk establishes the first
claim. Now apply the differential operator

— Bold /ds) — il + M to (6.9) in the sense of distributions to
obtain

~ (B % — ik M~ Thi9R (55) = Bl ~ )
ds

735

Since 4 is smooth, R (s,s5") is smooth in s for s 5™ and we
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s, 85, 8) =

have (6.10). To establish that R (s,s') = S, s (S8} almost ev-
erywhere, we note that § W u(s,s") satisfies the integral equa-
tion (6.9) in an almost everywhere sense because it is the
matrix kernel of (1 — SWIA )~ 'S By Corollary 6.2 we
know that S/, (s} is L ? for almost all s', and so for all such
R {-,5') almost everywhere, column for col-
umn, by virtue of uniqueness. O
Lemma 6.5: For heC $(R) real-valued,

SUn L5585, (55 =0, aa.(ss)eRXR.

Proof: By the preceding lemma it suffices to show that
for fixed s’

RTH L (sSV*R ), (s,5) =0, s#5".
Now by (6.10), we have the equations

L R Gk’ = (= 1B+ BoM — Bul h SR Gy 55,
& RIZ4l5) = (B — BoM + Bl RSR[5,
The matrix adjoint of the second equation is
LR s
=R'Z5 _ 58— By — BoM — T Boh (s))
=R'=3 _ (5,8 (iBoH — BoM + Bol h (s)).
Hence
i [R=p _L(s,8)* R, (5,5)] =0, s#s,

soR~H _,is,8'*R Y ,(s,5') is a constant matrix on either

side of the smgularlty But the integral equation (6.9) implies

exponential decay of this quantity as s— + oo. O
We are finally in a position to prove (6.4) for smooth 4.
Theorem 6.6: For real-valued 2eC 7(R),

tr S, (5,58 _ (s,8)* =tr SE L5585, (5,510

for almost all {s,s’ )eR XR.
Proof. For convenience we abuse notation by suppress-
ing the arguments s5,s". Obviously

~ 0 ~ o
IS5 =S 1SS, — S0k
=80 _.*SSk ~ S5 WS T

— S0 SN, +8'5 *S(_Mh’

where the multiplication is understood to be pointwise ma-
trix multiplication. Now the second and third terms on the
rhs vanish by virtue of the preceding lemma; moreover, we
can apply (6.7) to the ths Hence

[2(d + M)C_, I 1*[2(ik + M)C, T}
=§(Anf),—h*§”,k +§(:;I).fh*§(—_1\,rll)vh
almost everywhere. Simplifying the lhs, we get
— 4 + MA)IC* ,C, 1 =S5, *S5,
_ FS'(M_,;.")‘S'&_,T;.F,
where we have applied the relation
rsy,=—8n, I ae

to the second term on the rhs. Taking the trace of this equa-
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tion, we have
4n* + M3tr C* ,C,
=tr S _ xS0, +uw S5,
=tr SV _,*S%, + S PAS .
But since the Dirac matrices have been chosen to be real-
valued, we also have the relation

S, =Sy ae

Now for any matrices 4,B,

trA= trd, A* =A% AB =48
)
4 + MHYtr C* ,C, =21 §§,*SY _, ae.
By Lemma 6.3, C, and C _ , are positive matrices, so
trC* ,C,=trC_,C,>0 ae,

and so the desired inequality is established. QO
Corollary 6.7 For real-valued, bounded, measurable 4
with compact support,

tr S, (s,s’)5~",(',', _uls,5)*>0
for almost all {s,s')eR X R.
Proof: There is a sequence {4, ] of C & functions which

are uniformly bounded and supported in a common bound-
ed set such that

h,—h ae, k—ow.
By the preceding theorem we need only show that a subse-
quence of
[S(I:‘l),j:hk(s’sl)}:= 1

converges to S 4 (s,s") for almost all (s,5'). Now by the domi-
nated convergence theorem

SWrh,—SWra, k—cw,
in the Hilbert-Schmidt sense and therefore in the bounded
operator sense. It follows from the Neumann expansion
(1-4,)""'—(1—4)"!
= 3 [1—4) U —a) (1 —a)
k=1
[which certainly converges for (1 — 4 )~ ' bounded and 4,
sufficiently close to 4 in bounded norm] that

(AFSYUrh) 'S0 FSYTh)™, k>,
in bounded norm. Hence
§K2i"k

= (1 FSWIrh)-'SUr, . —(1F SWra)-'ser

= § 5‘"). +h
in Hilbert-Schmidt norm, and so we have convergence of
kernels in the L ? sense. a
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Solutions of the wave equation for superposed potentials with application to
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In this paper complete solutions of the Schrodinger equation for three different superposed
potentials have been obtained. In particular high-energy asymptotic expansions of the bound-
state eigenfunctions and eigenvalues are derived. Various properties of these expansions have
been examined including the behavior of Regge trajectories. Finally the relevance of these
investigations to various aspects of the spectroscopy of heavy quark composites is discussed in

detail.
PACS numbers: 03.65.Ge

I. INTRODUCTION

After the discovery of J /¢ resonance' much theoretical
effort has gone into understanding the spectrum and decay
properties of the J /¢ family.?* The charmonium model*”’
has been quite successful in interpreting ¢ and ¢’ as
charmed-quark-antiquark (c¢) bound states and other subse-
quently observed phenomena. The discovery® of charmed
mesons, besides giving strong support to the theory, also
provides a semiquantitative description of the vast body of
new ideas accumulated in colliding-beam experiments in the
3-5 GeV energy range.’

The interaction between quarks is mediated by gluons.
From the asymptotic-freedom arguments it is known that if
the distance between quarks gets small (the interaction ener-
gy being very high), the strong coupling constant &, < 1 and
one has a similar situation as in QED. One gluon exchange
prevails and perturbation theory can be applied. At large
distances, however, the interaction energy being small o
gets large and this coupling prevents the liberation of quarks
since the production of ¢g pairs is more likely.

The large masses of i resonances and charmed mesons
led to the assumption that the charmed quarks are so heavy
that they may be treated nonrelativistically.* No one has yet
succeeded in calculating the effective form of the interquark
forces from quantum chromodynamics even in the nonrela-
tivistic limit.'%'" Most of the attempts, therefore, at under-
standing the level spacing and the decay rates of heavy me-
sonic states in the ¢ and Y regions start from a
nonrelativistic considerations of the bound-state problems
for a vector (or scalar) interaction and utilize numerical tech-
niques for solving the wave equation, while the spin-orbit
coupling, tensor forces and hyperfine structure are treated as
additional corrections. In spite of the fact that different mod-
els have been able to provide most of the important features
of meson spectroscopy, a comparison of the results so ob-
tained, however, shows that various parameters involved in
these models differ appreciably in their values. This differ-
ence obviously indicates a certain range of uncertainty in
their values. Although numerical methods have been found
to be quite useful in such type of study it would be worth-
while to obtain theoretical expressions for obtaining good
approximations to various features of the theory viz., the
level spacings, leptonic decay width, etc. For the interpreta-
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tion of various results, therefore, various potential models
have been developed. The long-range binding between
quarks has been “guessed” as V' ( #) = ar, i.e., V' { r) which has
linear dependence on r and the constant a has to be deter-
mined experimentally. In some cases even a harmonic-oscil-
lator potential'? has been used. Miiller-Kirsten et al.'*'4
have recently considered in detail the logarithmic and the
superposition of arbitrary quark confining potential with a
short-range gluon exchange Coulomb component. Eichten
et al."® have also recently postulated that in the nonrelativis-
tic limit many of the gross features of the potential between
the charmed quarks can be simulated by the potential
V(r)= —k /r + r/a’. They have chosen this potential to
give a simple interpolation between the known Coulomb-
type force at short distance and a linear growth of the static
potential suggested by some models of quark confinement.'®
In the following we consider in detail a perturbation-theo-
retical solution of the wave equation for the three potentials
which are the superposition of

(I) a quark confining linear potential and a short-range

gluon exchange modified Coulomb potential
— 8,/r In(r/r,) as suggested by asymptotic-freedom
arguments,'’

(I1) a logarithmic potential and a short-range gluon ex-
change modified Coulomb potential similar to that
considered in (I) above, and

(II1) an arbitrary power quark confining potential and a

short-range gluon exchange centrifugal potential.

Besides the reasons mentioned in the beginning, the

other motivations which led us to undertake such a study are
that after the discovery of 7 states'® doubts have been raised
on the application of linear potential as a phenomenological
ansatz for the quark confining interaction. In view of these
difficulties with the linear potential, Quigg and Rosner'**
investigated the spectroscopy from a logarithmic and a pow-
er potential viewpoint. We hope, therefore, that our study
made here will not only be useful in finding out the approxi-
mate form of the potential but will also pave the way for
investigating the spectroscopy of heavy quark composites of
various other new states which may be discovered in the
future. In the present work we, however, confine ourselves to
the study of charmonium spectroscopy only.

Since an exactly similar procedure has been adoped for

solving all three potentials (I}, (II), and (III)}, we show the
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details of our calculations for potential (I} only. This has been
done in Sec. II. We derive various types of solutions of the
wavefunctions as well as asymptotic expansions for the ener-
gy eigenvalues and Regge trajectories. For the other two po-
tentials, (IT) and (III), we give in Sec. I only the final expres-
sions for wavefunctions, energy eigenvalues, and Regge
trajectories. In Sec. III then, we investigate the physical im-
plication of these asymptotic expansions of the energy eigen-
values and Regge trajectories for all three potentials. In this
section we also consider the spin-dependent corrections
(spin-orbit, tensor, spin-spin) and calculate the splitting of
the 3P, levels of charmonium. The S-wave bound-state wave
function at the origin and the leptonic decay rates have also
been calculated. Finally, in Sec. IV, we give a brief discussion
of our results.

Il. ASYMPTOTIC EIGENSOLUTIONS

We consider the Schrodinger equation for the following
potentials:

D) V(r)=gwr—g/rn(r/re) — Vo, (2.1)

(IN) V(r) = guIn( #/ro) — g2/r In( #/7o) — Vo (2.2)
where g,, g, >0, g,>8, and V,, is constant, and

(II) V(r) =g\ + &,/ — Vo, (2.3)

whereA>1,g,,8,>0,and V,is a constant. Separating off the
motion of the center of mass in the usual way we obtain the
radial wave equation for the relative motion of the two parti-
cles of masses m,, m,, i.e.,, -

2¢ g i+ 17
dr2 urt
where, as usual ¥ = (1/r(r)P T(cos O )™,
p = mm,/(m; + m,}is the reduced mass of the two parti-

cles, and r is their separation.
Now we consider potential (2.1), on setting

a = 2u(E + Vy)/#,

—V(nlg=0, (2.4

B =2ug/#, (2.5)
8 = 2ug,/#,
and
Eg. (2.4) can be written as
2
ay 14 6
a— = —pr+ = 2.6
dr2 r pr+ rin(r/rg) V= (26
Next setting
r=e"/2(-oo<z< ), and 2.7)
p=e"
we obtain the following basic equation:
2
df +(—L*+vj2)p =0, (2.8)
where
v(z) = ae® — Be¥ + 5( ¢ ),
z—c¢
Li=r+} (2.9)
781 J. Math. Phys., Vol. 23, No. 5, May 1982

and
c=Inr,

Now such value of z, say z,, is determined for which v(z)
becomes maximal. In the vicinity of this maximum
[v(z) — L *] may become positive, thereby making the solu-
tions oscillatory as needed for the existence of eigenvalues.
Hence setting (dv/dz), ., = 0, one gets on solving for z,

o=l el e Rersan )l | P10
for

a>0,8>0.

Expanding v(z) in the neighborhood of the maximum at z,,
we obtain

v(z) = v(zo) + 2 "7(z ) (2.11)
i=2 .
wherefori =0, 1, 2, -,
vzg) = 2are™ — 3ie™ + Be*((z — €)' — ifzg — ¢)

+ili —Wzg—c) 2 —i(i — )i — 2)(zp —c)~*

+ i — 1) = 2)(i = 3)zg — €)% — --]. (2.12)
For i = 0 this expression is positive, for / = 1 it is zero, and
for i > 1 it is negative [as required for a maximum of v(z) at
z =z, for a > 0)]. We now set & = { — 2v'%(z,)} "4, i.e.,

4a** 56K 3B61a]

h= B +2a1/2 Y +0(B?), (2.13)
where
__InCa/3re)
[In(2a/3Bre)}?
and

la] = [(zo — €)' + 2020 — ) 7" = 2(zg — ¢) *]. (2.14)

On changing the independent variable in (2.8) to
@ = h{z — z,) one gets

2¢ [ L+u(zo) w—7]¢

4
e vz, ) o'
= o )= 4 2.15
,-;3 (20‘2)(20) Mhi-? ¢ 2.13)
where
vz, _ 2ae™ — 3Be* + Se[d ] (2.16)
vP(z0)  ae — 3Be 4 Se*[a) '
and
(d]=1[zo— )" —ilzg— )2 + i — )iz — ) *
— i = Wi = 2)zg— )"+ -], (2.17)
In particular, we have for i = 3, 4
e
vzg) [ 15 Bé 3 ﬂd 9 BSK ]
—¥o |54 2 29 _ 2P
v@(z,) M a’ la a’ (b 2 o
(2.18)
and
v¥(z,) 19 57B5(al 3B6(c] 45 BSK
iz Lt a2 &)
(2.19)
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where

bl=1lzg—¢c) ' — 3z, — C)vz
+ 6z — €) 7 — 6(zy — ¢) %] (2.20)
and
el = [(zo — 5)7] — 4z — c)—z + 12(z — 0)73
—24(zy — )™ + 24{z, — c)~°). (2.21)

For large values of 4 the right-hand side of (2.15) may,
to a first approximation, be neglected. The corresponding
behavior of the eigenvalues (1/4 %) — L * + v{z,)) can then be
determined by comparing the equation with the equation of
parabolic cylinder functions. The solutions are square inte-
grable only if

(1/h %) — L7 + vize)] = 4g,

whereg =2n + 1,n =0, 1, 2, ... (provided the wavefunction
is required to vanish at infinity; otherwise it is only approxi-
mately an odd integer). For the complete solution we get

(1/A3)(—L* + v(zo) = g + 4 /h. (2.22)
The quantity 4 in (2.22) remains to be determined. Substitut-

ing (2.22) into (2.15) one gets an equation which can be writ-
ten as

24 e vz )) '
D p=——¢ — ( 0 - , 2.23
q¢ h ¢ 2;3 vm(zo) hi—? ¢ ( )
where
d? 1

Equation (2.23) is now in a form suitable for the applica-
tion of our perturbation method. ¢ = ¢ ©is simply a parabol-
ic cylinder function D, _ ), (@), i.e.,

$¥=¢, =Dy _y,(0) D ,6,=0, (2.25)
where
v (3—q 3 @
Dy, _ (@) =297V /451’(—4_‘1 "y T)’

¥ being a confluent hypergeometric function. The function
@, is well known to obey the recursion formula

ob, =99+ 2,2 +199— 28,1 (2.26)
where

Gg+2)=1, (g9—2)=4g—1) (2.27)
For higher powers we have

o'¢, = 2 Si(g: g+ ; (2.28)

Jj=2i
and a recursion relation can be written down for the coeffi-
cients S;. The first approximation ¢ = ¢  then leaves un-
compensated terms amounting to

R = [% Ti(%) 'h'*2]¢ @)

24 &
="~ h, i, 4 @), (2:29)
where we have set
- @ 1 .
Sigi) =21 L5 g.5 230
vzo) 1!

We rewrite (2.29) in the form

Rq(m i q +.]] ¢q+j(w)v (231)
i=3 h ]~2:
where
[q’ q]3 - ZA - §3(q,]),
and for j#0
(9,9 +/1:= —S(g.)) (2.32)
and for

i3, —2i< <2,

(4,9 +j1; = —Silg.J)-
Since Y, , =D, —jy Db, ; =jbg+,»atermugd,  ;in
R ¥ can be removed by adding to ¢ ” the contribution

ud, . ;/j except, of course, when j = 0. Thus, the next-order
contribution of ¢ becomes

1 2lgq +]]

p"=35 —% By @), (2.33)
i=3 h j=2i
J#0
In its turn this contribution leaves uncompensated
& < le g +j]
R, = Z hliz Z R,
j=2i
j#0
and yields the next contribution of ¢
2 1 Zileg+jli & 1
¢? = A : _
i;3 h"zj:zz,- J i'zsh'_z
j#0
< la+ig+i+J1s

J+F#0
Proceeding this way one gets the solution
¢ =¢(0)+¢(1)+¢(2)+
which is an asymptotic expansion in descending powers of A
valid for
z—zy=0(1/h), (2.35)

i.e., around z = z,,. Together with this solution we obtain an
eigenvalue equation from which 4 in (2.22) follows. The lat-
ter is obtained by setting equal to zero the sum of the terms in

3 EXE | [q,q+J]
0=3——la+5 53 3

j=2i =
j#0
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¢,inR,”, R, ... which have been unaccounted for so far.

Thus
— g+ 9] + (2.36)
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or

1 1 = g, ] ,
0= lo.gl+ o5 (logl+ 3 120t g 413]+ o1/ 2.37)
=6
o
This is the equation from which 4 and hence the eigenvalues are determined. Thus
214 = (5,(q, 0) — 1Sig, 6)S3lg + 6, — 6) + iSi(g, — 6)S,(g — 6, 6) — 4Si(q, 2)S3(g + 2, —2)
+183g, —28ig —2,2)} + O (1/h)

_ qz;i-l [19_ 45B8K _ 3BSle] 5755[a]]_ (154 +7) [25_ 45B5K _ 1565

20 4’ 4a’ 2432 a 2a? 61+

75868 a] ]
2a?

+0(1/h3).
Using (2.5), (2.18), (2.19), and (2.22) we obtain

1 [16a® 20abK 1 [4a®* 58K 3B8[a] (1054 + 25) BSK
[+ 1727 =— —25 ]—— - 9
( F=12 e T3 @l =5t ™ T | T 5 e
(51> + 1) (219¢* + 59) BS 1 (93¢*+23) B5 _» . (183¢% +23) BS _
+ A MY T ) FY 2 A T Lr) Y 3
> ' 1502 a2[ ] IXE o 4172+ i o [4]
(574> +17) B8 —a, P +1) B8 _s g [42® | 56K 3B5[a] |-
T g AT M 5+F[ B 227 47
X [(— 19.851¢ + 0.2963) — (857.775¢* — 451.11) ﬁ‘S—ZK + E‘Z— {(2932.444¢% + 1999.11)[4 ]!
a a
— (4380.443¢% + 2695.111)[A4 172 + (697.777¢* — 192.89)[4 ] 3
+ (4530.669> — 5309.334)[A4 1~* + (7296¢% + 7616)[4 ] 3
+ (4640g° + 10 400)[4 ] ~° + (960g° + 4800)[4 17 }] + O (1/h°),
where
2a 3BSK
A=t ( )(1 )] (2.38)
(4] [n 3Br, + 4a?

It may be of interest to note that for § = 0 the expression (2.38) reduces to the eigenfunction expansion for the pure linear
potential. This expansion is found to be in exact agreement up to O (1/h ?) with that obtained by Miiller-Kirsten et al.™*
Proceeding in a similar manner we can write the following large-h asymptotic expansions of eigenfunctions of the Schrédinger
equation for potential (2.2)

I+ 172 = le- [4ﬂrO epo(M - —;—) —2r, exp( E+V, _ —;—)5(4[#0 exp(E ¥ _ —l-) + [a])

8 81 81 2
1 [ (E+V, 1) E+V 1 E+V 1 172
— —g|4Bryexp2y —— & — — ) —2r5ex (—-—0 — ——)5(4 ( 0 _ —) )]
5 0 \ o, 5 0 €Xp 2, 3 Bro exp 7 3 + [a]
2 2 2
PCVE eIV P %—exp[—(E+ Vo _ L)]{_ 3574 +109 .
23 273 B 2 2 2
— %(q2 + 1)[e] + 4154 + 7)[b ]] + 251 _ [( — 7.0125¢> + 0.2962) + (212.148¢7 + 2967.25)8p
E+V, 1 2 2
+ 6ry expl — —g—— Y (2554.96¢° + 3843.85)[a] — (827.259¢* + 926.814)[b ]
1
+ (4984 + 822)[c] — (99.55¢7 + 270.22)[ ] + (5.55¢% + 27.778)[e]” +0(1/hY, (2.39)

where the notations § and 6 have the same values as given in (2.5) while other notations used in the above expansion have the
following meaning:
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—a/B+ 1/2( .t
- I _e €+32) ,._ _«a
a=2uE+g Inr,+ V), p TSy 7 +1Inr,
hé= 4ﬁe(2a —BVB _ ppla—B)2B [4Be(2a—5)/25 + [a] ]5 +0 (52),
_ 1 2 2
lal= [<zo —¢)  (o—Cf  (g—c ]
1 3 6 6
b]= - —
(51 (2o — ') (zo — C’)z (zo — c')3 (zo — C’)4 ],
[c] = [ 1 4 2 24 24 ]
(Zo—¢) (@o—C) (Go—¢P (zo—¢)  (zo—cP [
[d]=' 1 5 20 60 120 120 ]
Lzo—¢) Eo—CP  @EBo—C)P (Bo—c) (@G-  (go—c)ff
_ 1 6 30 120 360 720 720
= [(zo —c) (=P (gp—C) Zo—c)  (zo—c¥ (2o—¢)°  (zo—c ] 1240

It may be of interest to note that for § = 0 the expression (2.39) reduces to a eigenfunction expansion for the pure logarithmic

potential. This expansion is found to be in agreement up to

O(1/h ?) with that obtained by Miiller-Kirsten et al."

Similarly for potential (2.3), we can write the following large #-asymptotic expansion for the eigenfunction

2 _ of 1 _ VI N YT 2 2 2
U4+ 1/27 =6 + ap'(5m) = aplad /17 i [ = g7+ A7 + 64+ 12) + (154 + THd + 47
g [(—320q2—- 1600) (/1+2)5—25} . (22404 + 6080) [(,1+2)4~24] [(,1+2)2—2ZI
2l ) %p 720 A 5131 A A
(5444 + 2144) [(/l +2)P — 23]2 (72004 + 14688)
232 A A3
A+2P—2°] [A+27—22]2  (5640g° + 9240) ({1 + 2 — 22)* ,
x[ - } [ - } + i ( - ) +0(1/h3), (2.41)

where 8, a, and  have the same values as defined in Eq. (2.5).
Other notations used in (2.41) have the following meaning:
p=|2
R+ApP
Equation (2.40) for A = 1 and & = O reduces to the eigen-
function expansion for the pure linear potential. This expan-

sion is found to be in exact agreement up to O (1/4 %) with that
obtained by Miiller-Kirsten et al.'*

1/4
] , hi=2ald)"p. (2.42)

Hl. APPLICATIONS

A. Regge trajectories

We have utilized the square roots of the expansions
(2.39) and (2.41) for plotting Regge trajectories. The Regge
trajectories for potential {2.2) has been shown in Fig. 1, while
for the potential (2.3) they have been plotted in Figs. 2 and 3.
In Fig. 2, in particular, the first four Regge trajectories have
been shown for A = 1. Similarly in Fig. 3 they have been
plotted for A = 2. The values of quark mass m, §, and 8
chosen for plotting these trajectories have been given in Ta-
ble I. We observe that these trajectories are almost linear
over the range of immediate interest. It is, therefore, of inter-
est to conclude that Regge trajectories for the superposed
potentials considered by us in this paper do not lose their
linearity and their bahavior is similar to the ones obtained
for pure logarithmic and linear potentials.
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|
B. Calculation of bound quark-antiquark mass

Since the quark mass is twice the reduced mass y, the
mass M, of a bound quark-antiquark pair in the state g is
given by

20

15,

—_——— e

i

M T T T T
o% 1 AL-3 2 2.5

—(E+Vo)

FIG. 1. First three Regge trajectories for the potential (2.2) with m = 1.65
GeV,B=1237GeV? 8§ =0.15GeV,and r, = 1 (GeV)™".

Sharma et al. 784



M,=4u +E. (3.1)

In Table I, the calculated values of lowest S and P states
obtained from (2.38), (2.39), (2.41), and (3.1) along with their
corresponding experimental values are given. The values of
the corresponding parameters used in the calculation {i.e., 5,
B, ro, and m) are also given in the same table. The values
predicted for the higher S states agree with those stated by
other authors (see, e.g., Refs. 21 and 22). The P states, of
course, have to be corrected for tensor forces and spin-orbit
and spin-spin coupling. This is done in the following Sec. HI
C.

C. Spin-dependent corrections

Spin-dependent corrections have been considered in
many previous investigations**~’ and are generally taken
over from the corresponding work on positronium. To lead-
ing order in (v/c)?, where v is the relative velocity of the quark
and antiquark (each of mass m), the correction to be applied

S\, = 3(o-Hoyf) — 00,

In the usual way we have for .S = 1 and, respectively,
J=L—-1,LL+1

LS= ~(L+1), —1,L. (3.3)

Similarly we have for S = 1 and, respectively,”® L =J — 1,
J,J+1:
2(J — 1)_,2, 2 +2) . (3.4
27+1 W +1

We first discuss the correction to be applied to the po-
tential (2.1). Substituting ¥ into ¥V, we obtain terms which
are singular at » = 0O (i.e., more divergent than 1/7). Since
there are no acceptable bound-state solutions for such singu-
lar potentials, we have to regularize the singularities by the
introduction of cutoff parameters a, b, and ¢ into the poten-
tial. We choose these parameters by using the following re-
placements in the singular terms:

Sp=—

: : 1 1 1 )
to the potential V{r) is )
P 3 (1) v . Pn{r/ry) - rin(r/ry) (7 + a?)
Vi) =—— Cidu) Ls + — V¥ (rjo -0, 1 1 1
2m* r dr 6m T o }  (3.5)
r(In(r/ry) rin(r/ry) (Fln(r/ry) + 6%
1 (dW(H 1 dv
- (=0 - — S, (3.2) 1 1
12m* \ d ro dr (FInr/rF  rin(r/r) [(rIn(r/r)f® + 2] )
Here L is the orbital angular momentum operator,
S = |(o, + o), and S, is the standard tensor operator, i.e., Substituting ¥ into ¥, we then have
i |
3 & ¢) 4]
V.(r)= el 4 + LS
" 2m? [ ro rin(/r(rP +a%  rin(r/ro){PIn(r/ry) + b7}
. [2& _ 8 _ 28, ] .
ém? | r rin(r/r){PIn(r/ry) + b2} rin(r/r){(r In(r/ro)f* + c*} r
. [ 28, + 38, " 28,
12m? Lrin(r/re)r? +a%)  rin(r/r){PIn(r/ry) + b2} rin(r/re){(r In(r/r,))* + ¢*}
+hy & = Sia B.6)

roorinfr/rg)” + @’ +

rIn(r/ro)(PIn(r/ry) + b?)

The Coulomb terms here can be treated as a further perturbation. We next assume that on the average the separation of quark
and antiquark in the meson is such that 0<r/a; [In(r/r,))/b%; [r In{r/r,))/c<1. In such a case we can expand the regularized
denominators in rising powers of 7 and ignore all powers of r higher than the first since these would have to be treated as

further perturbations of the linear confinement potential.

Under these conditions, we have to add to ¥'{r) the contribution

Vir) =—2
rIn(r/ry)

where

3 1 1 1 2
c

2m? \a b? em?\b2 &2

{3.7)

12m* \@*>  b*

This means that the coupling constant g, associated with the (r In(r/r;)) ™' term in V' (r) has only to be replaced by (g, + d) to

obtain the well-known 1 **+ P, states.

Expressions similar to (3.7) can also be found for the spin-dependent corrections to the potentials (2.2) and (2.3).

Thus, for the potential (2.2)

d d
V _— 1t 42
() rin(r/ry) + e

785 J. Math. Phys., Vol. 23, No. 5, May 1982

Sharma et a/. 785



10

3

NS

FIG. 2. First four Regge trajectories for the potential (2.3) with 4 = 1,

———ol :M(E+Vo) Gev

m = 1.65 GeV, B =0.35 GeV*, § = 0.01.

4 ]
M
"
oY L] X
n
"
oY
2]
"
o}
bod
14
o ' ——
[+ 1 2 3
S — { , , —
1 2 3 & L3 [ K4

———————~ o<=m(E+VO) Gev.

T
4

s K 7

FIG. 3. First four Regge trajectories for the potential (2.3) with 4 = 2,
m = 1.65GeV, 8=0.055GeV*, 5§ =1.18.

TABLE I. The lowest Sand Pstates of charmonium obtained for the potentials {2.1), (2.2}, and (2.3). The input value is underlined. The quark mass ‘m’ in each
case has been chosen to be equal to 1.65 GeV.

Mass (GeV) Mass (GeV)

calculated calculated Mass

for potential for potential Mass (GeV) calculated for potential (2.3)¢ with (GeV)
States 2.1)* 2.2)° A=1 A=2 A=3 A=4 A=5 A=6 A=17 A=38 (observed)
138, 3.096 3.096 3.096 3.096 3.096 3.096 3.096 3.096 3.096 3.096 3.096
1°P 3.52 3.43 3.39 3.28 3.20 3.17 3.14 3.13 3.12 312
28, 3.64 3.69 3.66 3.66 3.67 3.68 3.66 3.68 3.68 3.77 3.684
2’p 3.88 3.70 3.86 3.85 3.80 377 3.73 3.74 372 3.81
33S, 4.06 3.88 4.14 4.23 4.22 4.23 4.16 4.17 4.16 4.29 4.16

*For this potential the input values used are f = 0.3 GeV? 6§ = 0.15 GeV, m = 1.65 GeV,and o = 1 GeV~ .
®For this potential the input values used are B = 2.37 GeV?, 8 = 0.15GeV, 7, =1 GeV ™.

‘For this potential the input values used are

(i)
{ii)
(i)
Yiv)
v)
(vi)
(vii)
{viii)

786

fori=1;
ford=2;
for A =3;
for A = 4;
forA =S5;
for A = 6;
forA=71;

3

forA =8;

B = 0.35 GeV*,

B = 0.055 GeV*;

B = 0.008 GeV*;

B =0.003 GeV*;
B=9%X107° GeV%
B=85X10"°GeV*
B=7x10"7GeV%
B=1x10""7GeV*%

5= +0.01,
5= +1.18,
5=45,
5=10.5,

& =18.5,

6 =129.5,

6 = 45.0,
5=61.8.
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g (1 1 & (1 2 g (3, 4 2
=B (s S e et e o 4
and
3g 1 1
d,= 2m12 L-S +—6m2 o0, + T S

This means that, in this case, the coupling constant g, associated with the (7 In(r/7,))~ "term in ¥V (r) has to be replaced by
(g, + d,) and a term d, has to be added to the centrifugal term of the Schrédinger equation to obtain the well-known P states.

[
For the potential (2.3),

v.in=%+4,
r

where
3 1
b=[Frs+ o]t
and
1 1 g
d,= [BL-S -3 0,0, + ?Su] a4;2 . (3.9)

Thus a Coulomb term gets added to the potential V' (r). The
solution given by Eq. (3.2) in Ref. 14 has therefore been used
to calculate the P states.

In Table II the charmonium states 1 ** 'P, for the
three potentials (2.1), (2.2), and (2.3) along with the corre-
sponding experimentally observed values®® are given. It will
be quite in order to state here that even with our simple {and
perhaps crude) arguments, the agreement of our results with
the experimentally observed values is quite good.

D. Calculations for leptonic decay widths

Decay widths are well known to play an important role
in exploring the origin of a newly-found hadronic state. The
leptonic decay widths of a vector quark-antiquark bound
state such as ¢ can be expressed in terms of the s-wave
bound-state wavefunction at the origin. Thus

2,2
2 v
)
Here a is the fine structure constant [not to be confused with

a of Eq. (2.5)]. e is the charge of the constituent quark of ¢.

ry—i) = (3.10)

TABLE II. The charmonium states 1 ** ' P, for the three potentials after correcti

In the case of an s-wave bound state, the wavefunction is
related to the potential ¥ via the following expression:

|wm%ﬁ§€9
_ B * ﬂ
=L v S v (3.11)

In order to calculate (d¥ /dr) and hence |¥ (0)|, the WKB
approximation method®' is used.
Thus, for the potential (2.1)

w(o)2 =L
o) =4

J- dr [E —g,r+ g/rin(r/ry) + Vo172 dV /dr
X

’

J dr [E —g,r+g/rIn(r/ry) + Vo] =172
0
(3.12)

where 7 is the classical turning point, r, = 1, and
dVv/dr=g, + gr *{(Inr)~! 4 (In 7)~?}. Similarly for the
potential (2.2), we have

wo)? =L
PO =

f dr(E — g\In(r/ro) + g2/r In(r/re) + Vo] ~V2 dV /dr
X =

f dr [E — g, In(r/ro) + go/r In(r/re) + Vo] =12
0
(3.13)

where 7 is the classical turning point, 7, = 1, and

ons for spin interactions. All parameters are as given in Table I along with

a=b=c=225GeV for potential (2.1); a = 4.5 GeV, b = c = 2.25 GeV for potential (2.2); and a = 2.25 GeV for potential (2.3).

Decay width Decay width
(keV) (keV)
calculated' calculated Decay width (keV) calculated for
for potential for potential potential (2.3) with Decay width (keV)
States (2.1) (2.2) i=1 A=2 (observed)
le’, 4.8 438 3.36 3.8 4.8 + 0.6
23SI 2.0 224 245 245 2.14+03®
KA 1.02 1.25 1.9 1.7 0.77 £ 0.1°
“See Ref. 29.
®See Ref. 36.
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TABLE III. Leptonic decay rates in keV for the three potentials. All parameters are as given in Table 1.

Mass(GeV) Mass(GeV) Mass(GeV)

calculated calculated for calculated for

for potential potential potential (2.3) with Mass (GeV)
States (2.1} (2.2) A=1 (observed)*
1°P, 3.531 3.540 3.550 3.561 + 7x107°
1P, 3.440 3.452 3.456 3.511+7x107?
1°P, 3.362 3.361 3.361 3.413+9x10°°

*See Refs. 24 and 35.

dV /dr=g,/r + g,y *{(In /)~' 4 (In r)~?}, and for the po-
tential (2.3)

()2 = £
o =£
fzdr [E—g, @ —g,/r + V,]-V2aV /dr

X ,
J dr [E—g,t — g/ P+ V,17 '

(3.14)

where r, and 7, are the classical turning points given by
{E — V(r)} = 0.Equations(3.12)and (3.13) have been solved
analytically to obtain | % (0)|? while (3.14) has been evaluated
numerically for A = 1 and A = 2.

The results obtained for the decay widths for all three
potentials have been shown in Table III and compared with
the experimentally-observed values.**

IV. DISCUSSION

The investigation made in this paper shows that simple
perturbation methods can be formulated for solving the
wave equation for the superposition of potentials. Qur en-
deavor here in particular has been to show that besides the
deployment of numerical integration techniques for obtain-
ing the meson spectrum, decay widths, and evaluation of P
states by considering the spin-orbit corrections, perturba-
tion theory can also be successfully used in such studies.

In particular the asymptotic eigenexpansions and e€i-
genvalues for the three superposed potentials (2.1), (2.2), and
(2.3) have been derived. As in the earlier investigations by
Dingle et al.* in connection with the asymptotic expansions
of Mathieu functions and their eigenvalues it is found that
expansions have successive terms which alternate in sign,
thereby indicating the Borel summability of the expansion.
In the expansions obtained by us a similar condition is
satisfied.

In our study we have used perturbation terms up to
O (1/h %) only. At first sight it might appear that the accuracy
of our results could have been further improved had we eval-
uated perturbation terms beyond second order. We have,
however, checked that the contribution due to second-order
perturbation terms is found to be very small when compared
to the first-order term. Therefore, the consideration of even
this term does not appreciably change our results.

In potentials (2.1) and (2.2} we have superposed an im-
proved form of the Coulomb potential—g,/[r In(r/7)] as

788 J. Math. Phys., Vol. 23, No. 5, May 1982

suggested by asymptotic-freedom arguments'’ with linear
and logarithmic confining potentials respectively. We have,
however, assumed that this modified form of the Coulomb
potential is sufficiently weak and is, therefore, treated as a
perturbation of the linear and logarithmic confining poten-
tials. Our results for the mass and leptonic decay widths for
both these potentials are found to be quite satisfactory.

Potentials of the form (ar + Br~ ') (or its invariants)
have been quite fashionable in the ¢ region although their
causal connection with QCD (except perhaps in very general
terms) may well be debated. Lack of interest in the harmonic
oscillator (h.o.) like descriptions of the cC region, on the other
hand, is due to an almost instinctive feeling that for ¢ quarks
which are heavy, only a nonrelativistic description makes
sense, and that any relativisitic sophistication is simply not
warranted. But a nonrelativistic h.o. model would necessar-
ily yield equal mass spacings at the linear level, in definite
disagreement with experiment, Joshi and Mitra** have, how-
ever, shown that the harmonic oscillator potential could of-
fer some results on c¢ spectra provided it incorporates a
short-range modification of the form ~7~?, as a sort of
counterpart to the Coulomb term of a confining potential.
Led by these considerations we have here studied a general
power potential along with a short-range r~? term as given
in Egs. (2.3). The main features of the results obtained for
this may be summarized as follows:

1. The values of the predicted s states agree well with
those stated by other authors.?'*

2. For the uncorrected P states it is observed that as the
power A is increased, the mass obtained for these states goes
on decreasing.

3. As A isincreased the centrifugal term associated with
the potential becomes more and more dominant, as is obvi-
ous from the increase in § and decreases in (3.

4. The decay width calculations do not give good result
for the 1.5 state while for other states they are satisfactory.

It should also be noted that expansions (2.38), {2.39),
and (2.41) are invariant under the joint interchange g— — ¢
and 4 >— — h 2, which obviously converts one solution into
another.
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A rigorous nonrelativistic time dependent quantum-mechanical scattering theory for a single

particle is developed for potentials of the form ¥ (r) = (sin 7)/7?

, 4 <B<1. The positive-energy

solutions of the radial Schrodinger equation are used to construct modified wave operators
which converge as #— + « on a dense set of states to the familiar time-independent formulas for

the wave operators.

PACS numbers: 03.65.Nk

I. INTRODUCTION

Nonrelativistic quantum-mechanical scattering theory
for short-range potentials and for long-range Coulomb-like
potentials has been developed to a high degree of satisfaction
in recent years (e.g., see Refs. 1-3). There remains incom-
plete the study of the so-called oscillatory potentials. Of
these, the prototypical class of radial examples is given by

V(r) = (sin r=)/r? B>0. (1
Existence of the Moller wave operators is known for (1) when
a +fB>1and B>} and also ** when 28 + a > 2. The pur-
pose of this paper is to establish a rigorous scattering theory
for potentials of the form (1) for @ = 1 and | <B<]}. This is
achieved by making a detailed analysis of the positive-energy
solutions of the radial Schrodinger equation. It is discovered
that these solutions do not behave asymptotically like plane
waves. Because of this fact, we expect that the usual Moller
wave operators do not exist. We use the asymptotic form of
the solutions to define a “modified” free propagator which is
in turn employed to construct wave operators. These opera-
tors converge (in the time-dependent sense) on a dense set of
states to the operators defined by the familiar time-indepen-
dent formulas on partial wavespaces.

Let us now introduce some notation in order that we
may state our main results. Since the potential V (r) is spheri-
cally symmetric, we may separate radial and angular varia-
bles to reduce the problem from three to one dimension. The
partial wavespaces

= {¢e L *(R¥)|¢(x) = R (NY,,,(2)],
when Y, isaspherical harmonicand |2 | = 1, are invariant
subspaces for the Hamiltonian

H= —4+4V,

D (H) = {¥e L*(R?|Aye L *R’) in the sense of
distributions}.

On S,,,, H is unitarily equivalent to the operator 4 on
LAR*)R*=(0, «)] given by

h¢=(—d—2+ I+

ar =
D(h)
d*  I(i+1)

= ppermnn( - 45+ 5

)7

+ V(r))¢e L¥R")
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in the sense of distributions and ¢ (r}—0 as r—0}.

(For a proof of this, see Ref. 6.) These facts allow us to focus
our analysis (without loss of generality) on the operator A for
fixed angular momentum /. For convenience and reference,
we state our main results here.

Theorem 1: Let ¥ (r) =(sin 7)//*, } < B<}. Suppose that
& (k,r) is a solution of the positive-energy radial Schrodinger
equation, i.e., that ¢ satisfies

d*? I+ 1) (k
[—derr }kr)kqi 7,
(ké{0, +4, + 1, +2, +3}). (2)

Then,
¢ (k’r) _ C+(k )eikr+i}4k)u(r)
+c (k)e * TN L o(1) as r> o0 (3)
where § .
v(r)=Js_2B ds andylk)= m 4
Theorem 2: For fe L*R™), let
Flk)= léi.m. dolk,r)f (r) dr (5)

[Li.m.=limitin mean, i.e.,in L (R *)}, where ¢,(k,r) is a solu-
tion of (2) with =0, chosen so that ¢,(k,r} = o' * ") asr—0
and so that the map f—f is an isometry (see Ref. 7). Let

= {fe L¥R*)|[fe C&(R*)and (}, 1, 2,3, & suppf}. (6)
Let us define the modified free propagator by

eI = [ allrie = Fik)dk, e, )
where [see Eq. (4)]
a(k,r) — C+(k )eikr+ ivik u(r) + C_(k )e — ikr — ik ju(r)‘ (8)

Then the limits

wrf= lim e™u(t)f 9)

t— 4 o

exist on the dense set A CL *(R*) and are given by

wEf= f::ﬁ (ko (k ) dk. (10)

The solutions ¢ (k,r) of (2) may be chosen so that the map

f—w*f is an isometry.’
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The next two sections of the paper are devoted to prov-
ing these theorems. The idea for the definition of u(t ) is based
on a technique of Zinnes and Mulherin.®

Product integral notation is used throughout to facili-
tate the study of the Schrodinger equation. Numerous refer-
ences to product integration are available in the litera-
ture.5*'° Frequent reference is made to a previous work* of
the author which contains a list of useful properties of the
product integral. This work will hereafter be labeled I, and
the properties labeled I (i), I (ii), etc.

The reader may regard the product integral formalism
merely as a useful notation for expressing solutions of ordi-
nary differential equations. The situation is analogous to
that of defining the antiderivative F of a function fas F (x) =
J%f(s) ds instead of saying that F satisfies F'(x) = f(x). The
integral notation is concise and lends itself to several quite
natural properties and estimates, such as {f + g = (f + /g
and |{f|<S|f].

The product integral notation has analogous attributes.
Much of our experience and intuition with integrals may be
carried over to product integrals, provided that we keep in
mind that the latter is derived from a product rather than a
sum. Briefly, the product integral is the propagator of the
solution of the differential equation.

2. ASYMPTOTIC FORM OF THE SOLUTIONS OF THE
RADIAL SCHRODINGER EQUATION

This section is devoted to proving Theorem 1. In this
proof, attention is focused on a fixed value of &, so that the
implicit dependence of functions and constants on & is some-
times suppressed in the notation. The k& dependence will be-
come important later, in the proof of Theorem 2. For sim-
plicity in the calculations, we shall take / = 0 in the proof of
the theorem. The term / ( + 1)/7* for I #0 falls off at infinity
sufficiently fast to have no effect on the result.

Before proving the theorem we state a slightly sharper
version of a lemma proved in I by integration by parts.

Lemma 1: Let B, p, and ¢ be constants with { <8 < 1,
j<p<liandc=i£ EeR, £€ (0, +1, +2, £+ 3}. Let
8(r) = = (sin 5)/s° ds. Then,

© L, iB(si/k
f e~ ds
r 5P

e e
c

— i0(ri/k 1 e(c + ir e~ i0(ri/k

re 2kc c+1i rPtFP
1 e(c — ir e i9(rn/k p ecr e~ i@ (r)/k
2kc ¢ —i cc rrt!
. 1 Hlc+ 2|')re —olnsk
4k *c(c + i)(c + 2i) rp+8
+ 1 Le 0k
2k %c(c® + 1) rPt¥
— 1 e(c — 2i)r €
4k *c(c — i)ic — 2i) re+#
+O0(F—r=E-Y,

Proof of Theorem 1: Let

Al = (V(r)o— k2 (l)) Pl = (Z((rr)))
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rr+8

—i8(r)/k

Then, Eq. (2) has the standard matrix form
P'(r)=A(rP(r), (11)

and its solution is given by

() =[[""*2., (12)

where @, = @ (a), for any a € R™. I1,¢* % is the product
integral of 4 from a to r and as such is the propagator of the
solution of (11).

We may write
$(r) = P[Je" " “o,, (13)

where P, is the projection operator on the first component,
that is,

In order to analyze ¢ (r), we study I1,e*® %,
Let

1 1
M= .
(ik - ik)

Then, by the similarity rule I(ii) we can write

I:IeA(s)ds =Mﬁe[M"A(:)M} dspp—1
a a

R
=MHelAn1S)+Az(S)ldSM—1’ (14)
a

where

= 2), °)

#= 5240 5

By the sum rule I {iii),

r r
HelA.(s) + Ay(s)) ds _ Q(r)HeB(s] ds’
a a

where

Q(r) — l:IeA'(S) ds _ ef,’,A.(S) ds [by I (Vll)]

a

B eklr—al, s 0
0 o~ ikir— a)e#f"’”s’ ds
B (d+ o0/ 2k gikr 0
- 0 d_e— 10k, —ikr)’ (15)
B(s)=(Q ~'4,0)(s)
0 y e~ i0V/kg~ 2iks
S ) e
Y.e e 0

and where we have defined

6(r)= fw V(s)ds,

ika (=
Fika ij‘q V(s)ds

b

d, =e
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and
vy = t(i/2k)d?, . (17)

That §;° ¥ (s) dsexists follows from an elemcntary integration
by parts. Note that y_ = 7, and Iy, 2= 1/4k2

Now let

Sfls)=y_Vsle OWke =2, (18)
where ¥ (s) = (sin 5)/s, § < f<}. Combination of (14), (15),
(16), and (18) yields

ﬁed ) ds _ MQ (r)I:IeB(S‘ d‘sM —1, (19)
where

(0 Sl
Bs)= (f(s) 0 ) (20)

We see that the study of IT; "  reduces to the study of
IT;e? %. The latter will be undertaken now, using the prod-
uct integral identity

[I+H(r)]Helﬂts)B(sl(l+H(si] ']ds(I+H(a)) (21)

HeB (s)ds __

for a and r sufficiently large and H (r) = § *B (s) ds. We shall
exploit the fact that B has only off-diagonal elements.

In order that (21) be applicable, it must be shown that
H (r) = §7 B (s) ds exists, where the integral may be taken
componentwise, which is to say that

HW=Q_P fﬂmm)
flds 0

exists. For this, it suffices to show that

J‘ f(s) dS = ’}/_J V(S)e_ ig(s)/ke—ziks dS

exists. By writing
Vi(s) = (sin 8)/s? = (1/s%){(e" — e~

we may express

(22)

)/2i},

X — 9{s)/k
e — 2k — s
A

i0
_ Y- ke d ds
2 I )

[roas=1=

If we use Lemma 1 on each of these terms and then
recombine exponentials to form sines and cosines, we obtain
{after laborious yet elementary calculations)

f?mm=nww4W -0 ke(k 1) + 2,k ),

(23)
where
z(k,r)
= —(4k? — 1) (1/r?)[2ik sin r 4 cos r]
+ [2k (4k 2 — 1)k 2 — 4)] ~(1/F7P){ — (4k2 + 2)sin 2r

+ 6ik cos 2r} — i[4k {4k ? — 1)) Y(1/7P)
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+ B(4k? — 1) X(1/r?+ "{4ksin r — i(4k % + 1)cos 7}
+ [8k*(4k? — 1)1~ (1/r*f)cos r
+ [4k *(4k? — 1)@k % — 4)(4k? —-9)]!

X (1/7°P){i(24k 2 + 6) sin 3r + (8k * + 22k )cos 37}

— [8k3(k? — 1)(4k?* — 1)] ~'(1/7*){3iksin r
+ (4k2 + 1)cos r} (24)
and
z)(k,) =0(r *) asr—ow. (25)

This shows that H {r) exists, which means that we are now
ready to apply (21). We have from (20) and (22) that

frs>fs) ds 0 )

HBin = ( 0 finsefis)ds) 126

We may write
HBI+H)'=HB—HBH(I+H)™!

and use the sum rule I (iii) to estimate I1;,eBV +#)7" 4 Since
HB is diagonal, we may use I (vii) to calculate its product
integral directly, i.e.,

f[eHB ds_,

a

(S7HB ds)

We therefore turn our attention to the calculation of

J:f(s)“;mf(u) du] ds.

Using (18) and (23)-(25), we may write
Fiks) f " Flkou) du

<4k )[(sm 5)/s# 1z(k,s) + O (s~ %) 27)

as s—o0.

For our present purpose of calculating the asymptotic
form of solutions of (2), we need only be concerned with the
first term of z(k,s) [see Eq. {24)] in (27), as this is the only term
in (27) which is not conditionally integrable. This is true be-
cause sin’s = } — }cos 2s, and §*s ~ * ds does not exist for
1 < B<}. In the proof of the existence of the modified wave
operators in Sec. 3, we shall have to make a more precise
estimate of (27).

With this in mind, let us define

vik)= —[4k(4k>—1]7", (28)
vir) = f s~ ds, (29)
1 0
= 30
Y (o - 1)’ (39)
C=iylk)r— Y, (31)
D=HB_C—HBH(I+H) ', (32)
and write

HB{(I+H) '=C+D. (33)

Note that D = D (k,s} = Ofs —**) ass—c.
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Using the sum rule

r r
He[HB1I+H) ]dszl'Ie[C+D]ds
a a

= T(k,r}f[e[r DT ds
where
T (k) = [Je°* (34

By I (vii), we have

T(k,r) — e(IZCdS)

oMk un 0
- 0 e~ inkn |°

Since T is bounded, we have that
(T ~'DT)k,s) =O(s %) ass—> 0.
Therefore, T ~'DTe L '[(a, « )], which implies by I (iv) the

existence of [1Ze!” 'PT) “=1im [1}e!7 'PT} % Putting to-
gether (13), (19), (21), (33), and (34), we have

¢ (k,r)
= PMQ(I + H)'T[[e!™'>" (I + H (a)M ~'®,.
) (35)
Let
Y=T(k)=PM, (36)
G=Glkr) =" 7', (37)
G=Gk)=T[e!" >4, (38)
L=Lk)=(+H@M D, (39)

We may now write

¢ (k) =YQU + H)"'TGL
= YQU+H)"'TGL + YQ(I + H)"'T(G — G)L
= TQTGL — YQH (I + H)"'TGL
+YQU+H)'T(G-G)L
= YPTGL + Y(Q — P)TGL
—YQH(I+ H)~'TGL

+YQU+H)'TIG-GIL, (40)
where
ikr
Plks) = (d+(k Je o )
0 d_(k)e—*

[see Eq. (15)]. (41)
If we let

€=¢— YPTGL, (42)

€ =TYQU+H)"'T(G-G)L, (43)

€="7(Q - P)TGL, (44)

€= —YQH(I+H)"'TGL, 45)
793 J. Math. Phys., Vol. 23, No. 5, May 1982

then we have

e=Se. (46)

i=1
Since
TPTé\L =C+(k )eikr+iy(k)u(r) +C__(k )e—ikr—-iy(kiu(r)’ (47)

the proof of the theorem will be complete if we can show that
€—0 as — . But this follows easily if we note that each of
the factors in each ¢, is bounded and each ¢, has a factor that
tends to O as — 0. A detailed analysis of all of these terms
will be given in the next section, where we prove the exis-
tence of the modified wave operators.

3.THE WAVE OPERATORS

In this section, we prove Theorem 2. By construction,
the wave operators W * defined by piecing together the var-
ious w * given in (9) and (10) for each partial wavespace S,
satisfy the usual results of scattering theory. That is, the op-
erators are norm-preserving [provided the solutions ¢ (k,7) of
(2) are chosen properly] and they satisfy the intertwining
relations. The proof, however, shows that these operators
may be used to approximate the asymptotic behavior of a
particle whose initial prepared state belongs only to a dense
set in L ? (R?) rather than to all of L *(R%). Physically, this
drawback should have little effect, since any initial state can
be approximated arbitrarily closely by a state in the dense
set.

We note that, as in the proof of Theorem 1, we carry out
the calculations for the case / = 0. The results remain valid
for I #0. In addition, we focus attention on w™ with the
observation that the proof for w™ is entirely analogous.

Proof of Theorem 2: We wish to show that

tim L)1) — |6 ) k) e [, =0

[See (5)~(10)]. This is equivalent to showing that

lim | (e ) £)(r) — e M (k) ik ) dk e

t—w

= Lim | {u(t) £ )} — fo“’(b (k,rle =" fk ) dk || Lxw

~ tim| " (8 or) — alkrlle Tk k[ e, =0,

A proof that allows us to bring e ~ “ through the integral
sign in the first equality above is given in Ref. 6. If we let

elk,r) = ¢ (k,r) — alk,r)
[see (8), (42), and (47)] and

glrt) = f:e(k,r)e - F k) dk, (48)

then our goal of proving Theorem 2 will be accomplished by
showing that

lim|lg(r,t )] 4z, = . (49)
Using (42)—(46) and letting

gint) = fwei(k,r)e ~ i Fik ) dk, (50)
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we see that we may write

g(r,z) = igi{rJ )

i=1

To complete the proof, we will show that
‘lim||g,.(r,t)||Lzm+, =0, i=1,2,3.

First, we indicate some additional notation and state
and prove a lemma found in I. For the remainder of the
paper, we interpret the statement

plk,r)=0{q(r)
to mean that there exist constants C and R in R* such that
r> R implies

plk,ri<Cqfr)
independent of k € supp f, where fe A is fixed. We introduce
the symbol L £ (dm) (or simply L £) to denote L ? ([a, « ); dm),
fora,peR*.

Lemma 2: Let P (r,t) = fgplk,rle = " f(k) dk, fe A,
|plk,r)| < B, YreR™, Yke supp f, B = const. Suppose that

FIPW)P dr < gla),

where lim g(a) = 0. Then

lm [P (7 )] oy = .

Proof of Lemma 2.

1P ey = [ 1P dr + [C1pwaypar,
0 a

VaeR ™+,

The latter term can be made arbitrarily small independent of
t by taking a large enough. The former term tends to O as
t— o by the Riemann-Lebesgue lemma and the Lebesgue
dominated convergence theorem because, for each reR*,
P(r,t) is the Fourier transform at ¢ of a function in L > (R™;
dk ), and P(r,t) is bounded on (0,a).

Remark: If p(k,r) = O (q(r)), where ge L 2(dr), and if p is
bounded, then p satisfies the hypotheses of Lemma 3a.

We shall now prove (49) with three lemmas.

Lemma 3a: lim||g,(r,?)|| L2+, = O.
t— oo
Proof: We have

grt) =L°°e,(k,r)e“‘""f(k)dk, (51)

wheree,(k,r) = yQ(UI + H)™'T (G — é\)L. We use the defini-
tions (37) and (38) and the property I (i) to write
I ]6 (52)

G — &= [f[e[T"DT]ds _

o

We shall write D [defined in (32)] as a sum of three terms, i.e.,

D=D,+D,+ D, (53)
where
D, (k,r) = iy,(k )r —*°Y [see (30) and (66)], (53a)

D,=UD, U, withf D ks)ds=0(r=*), (53b)
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U=TT, and T,(k,s) = [[e* %,

Dyk,r) = 0{r %) {53¢)

That (53a}—(53c) suffice to complete the proof of Lemma 3a is
given as follows. Using (53a) and the sum rule I (iii), we may
write

ﬁe{T*'DT} s _

— TlHe[U "Dy + DU | ds __ I

(T, 1)+ Tl(f[e'”"””“’"”"“—l). (54)

)

Since D, is diagonal, we may use I (vii} to write

T\kr) = [Je>

— eI;D, ds
eritkui(r) 0
“\ o o~ Ntk )u.(r))’ (53)
where
v,(r) =fs‘45ds. (56)
Therefore,
T, —I=iylk (Y + W (kr), (57)
where
Wikr)=0Wi(r)=0(r ¥+2). (58)

Now use the sum rule and (53b) on the second term of the rhs
of (54) to get

T;(ﬁe‘ UTND A DU 1)

_ T|(T4I£[elr‘ "U-'D,UT,) ds_1>

= T,[T4—I+ n(ﬁd”'" 'D‘UT“”‘—I)], (59)

where T (k,r) = 11", ¢+ *. We may write T, as a “time-or-
dered exponential,” i.e.,

Tykor) = I — f "D fk,s,) ds + f “Dyfks,)

x{ [ Dtk s s, ~ ..

From (53b), we have §°D,(k,s) ds = O (r ~ */) and thus,

Tky)—I=0(r— ). (60)

Finally, using (53c), I (vi), and the fact that U and T, are
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bounded, we have

ﬂemu”o,um ds _II <eIfIIT.U"DsUT.I|ds -1
oo

=0 %+, (61)

Putting (52), (54), (57), and (59) together, we may write
G-G=G,+ G,
where
G, = iy, (k v, YG, (62)
Gs=W,G+ T\(T,—I)G
+T, n(ﬁe”f UTDUT s 1)6. (63)

From (58), (60) and (61), it follows that

Gslk,r) = 0(r— ). (64)
We may now write (51) as
81 =84+ 8s
where
glrt) = | "eullorle™ " i) dk
(1]
and
glrt) = | “ellorie™ " k) dk
0
with
ek, )=YQUI+H) 'TG,L
and

estk,) =YQ (I + H) 'TG,L.
For Lemma 2 and (64), it follows that

}im||g5(r,t e =0.
We must now show that

;lim llgalrst )l 2m+) = O

Let us write

€4 =€+ €5,
where
€= YPTG,L,
€= —YPH(I+H) 'TG,L

+Y(Q@—-P)I+H)'TG,L.
From (62), (56), (22), {23), (15), and (41), it follows that
&lk,r) =0 (r—?).

[ edte =7k ak
t—r oo 0
We must show that

=0.

L*R™)

Therefore, lim

}im||86(’vt Nexme) =0,

where g (r,t) = I edk,rle ~ *’f(k ) dk. We have that
[¢]
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gdrt) = v,(r)J: YPTYGLe~ " {iy, (k) fik)} dk.

Now, g¢(r,) is a function which has the same form as
vy(r)u(t )gl(r), where (k) = iy,(k )f(k)and u(r)

is defined in (7). In fact, YPTYGL and YPTGL differ only by
the constant factor Y, i.e.,

TPTC?L —c,(k )eikr+ Mk 4 o — ke — vtk o),

and

YPTYGL = ¢ (k)e™ ™+ MM _ ¢ (K)o~ ikr = intktr)

Therefore, it suffices to show that
llim”vl(’)[u(t)f](")“z.’(n*) =0, Vfed.

Using (7) and (48), we may write
(u(e) 1) = | "6 e F 1k ak — gine),
so that

ot ) £1r) = v,<r)f0°°¢ (korle =7k ) dk — ,(rigir ),
By Lemma 2,

lim ||v1(r)f0°°¢ (krle~ ™ Fik)dk| =0,

L*R*)
because

f ¢ (k,rle —"*'f(k ) dk ‘
0
for ¢ (k,r) chosen properly.” Also by Lemma 2,

L) = ”f”uuvp

tlim||vl(r)g(r,t)||Lzm+) =0,
because

vilrlglrt) = 3 vilrigiirt)

i=1
and examination of (56), {50), and (43)—(45) reveals that
vifr) = O(r=7)
and
€(rnt)=0(r""%), i=123. (65)

This shows that the statements (53a)~(53d) imply the proof of
Lemma 3a. We must verify these statements.
Recall from (32) that

D=HB—C—HBH(I+H).

We use the (sin 7)/7 term of z(k,r) defined in (24) along with
(23)~27) to motivate the following definitions.

vilk)= —3[64k*k?— 1)4k2—1)]7",
D\(k,r) = iy,(k Jr— Y,

(2 (k’r) 0
Z\(k,r) = (4K >rP) 1( l() z‘,(k,r))
=0(r—%),
Z,=2,-2, (69

Z, = the sum of all terms of HBH which are O(r ~ *¢),
Z, = the sum of all terms of HBH ? which are O(r — *#),
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D,=HB—C—D,—Z,— HBH + HBH? { Z,,
D,=Z,—Z,— HBHY I + H)™\.

From these definitions, it follows immediately that
D=D +D,+D,,

and that D(k,r) = O(r ~ *#). Thus, we have (53a), and (53c).

For the sake of brevity, the proof of (53b) will not be given

here. The proof is elementary, consisting of nothing more

than several judicious integrations by parts of many of the

terms in

(1/4k Y[ (sin r)/r? z(k,r),
'}’_(k )e - 2ikre — i@ (r)/k’
(1/4k 3)[(sin 7)/r? 12%(k,7),
and
(1/4k e — 4ikrg — 26 0V/k (1 74k 2) [(sin 7)/r? 123(k,r).

The only thing that has to be checked carefully is that none
of these integrals results in terms such as v(r) and v, (r) defined
in (4) and (56), respectively. This completes the proof of
Lemma 3a.

Lemma 3b:lim ||g,(r,t )|| L xg+) = O-
t—> o0

Proof: We have

ilrt) = | eullre = Fik) dk,
wheree?(k,r) =0[T(Q - P )T@L Jtk,r). Using(15)and (41), we
may write
Q—P=PC
= [i(r)/2k 1PY — O (0 1),

B2k _ | 0
O e—i0(r)/2k_ 1)

which gives
exlkr) = [i8(1/2k 1YPTYGL + O (r= ).

Therefore,
g,(rt)=01(r f YPTYGLe~ f'*’(z'—kf(k )) dk
0

+ wa(r“zﬂ)e“’"‘Zf(k ) dk.
0
By Lemma 2,
lim f O(r—)e~ " F(k)dk
t—»c0 0

The other term is similar to g,(r,t ), discussed in the proof of
Lemma 3a. The constant factor ¥ may be disregarded (with-
out loss'of ‘generality), and we have

() L “rPTGLe- W(if{k )) dk = 0 (r)[ult)g1(r),

=0.

LYR*)

where gk ) = Zl_ki (k) and u(z) is defined in (7). As in the
proof of Lemma 3a, we have that

llim |6 (r) [z )q](")NL’(R*; =0.
This completes the proof of Lemma 3b.

Lemma 3c: lim||g5(,t)||L g+, = O
t— o0
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Proof: We have

gilnt) = f:es(k,r)e - Fik ) dk,

where e;(k,r) = [ — YQH (I + H)~'TGL ](k,7). We may
write

€3 = €5 + €,
where
€= — YPHTGL
and (67)

€, =YPHI+H)"'TGL — v(Q— P)H(I + H)"'TGL.

Since €,4(k,r) = O (r ~??), we have by Lemma 2 that

Feg(k,r)e — k) dk

We consider the term

lim

f—> o0

LYR")

lrt) = [ “elkrie™ % (k) a.
0
From (41), (23), and (24), we see that

e — d 57 ) “
—d_e *§=f(k,s)ds 0
=r BSP+ O(r— %), (68)
where
S (k,r) = ( . 0 ‘ 7_(k )(2ik sin ¥ + cos r))
7 (k) — 2ik sinr + cos 7) 0

and 7, (k)= 4 [(4k?— 1)2ik]~" [See Eq. (17)). Putting
(68) into (67) yields

€y =€+ €y,
where
€0 =rPYSPTGL

and
€,=0(r"%).

By Lemma 2,
lim f enlk.re =" f(k ) dk =0.
t—o0 0 LYR")

Except for the factor r ~£S, the term ¢,, is the same as
(YPTGL )(k,7)
= C+(k )eikr+ vtk ju(r) + C_(k Je ™ ikr — itk Join)
In fact,
r=PYSPTGL
=rf%inr {a+(k )eikr+ vk i) 4 a_(k )e — ikr — ipk Mr)}
+r- Bcos r{b+(k )eikr+ ik yo(r) + b,(k )87 ikr — iyik )U(,)}’

where
a, k)= —(@4k>*=1)""c, (k)
and
b, (k)= + [2ik(@4k*>—1)]""c, (k).

Just as in the proof in Lemma 3a, it can be easily seen using
Lemma 2 that
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'l_igi]]r“ Psin rlu(t ) 107+ =0
and

3im l|lr —Pcos rlu(t Y U)| L2m-, =0, VSfeA.
This i;:;lies that
J:e,o(fc,r)e ~ (k) dk

and, hence, that

=0

L3R™)

lim

o0

}iml|g3(r,t )”L’(R‘] =0,

which completes the proof of Lemma 3c and of Theorem 2.

Using (10}, we may extend the definition of our modi-
fied wave operators {9} on each partial wavespace from the
denseset A C L *(R*)toall of the L >(R™). Explicitly, for fe
L*R™), we define

wif= 11.‘i.m. R¢ (k,f (k) dk. (69)

We conjecture that
R

lu(t 1) =Lim. | alk,rle=“<fik)dk

R—ew Jo
[see (7)] exists in L >(R*) and that

w*f= lime"u(t)f.
t— o0
This does not appear to be an immediate consequence of
Theorem 2, because the modified free propagator 4(t ) is not a
simple function of the usual free propagator as, for example,
in the Coloumb case.'!

With this extended definition of the modified wave op-
erators, we conclude easily from (69) that the range of both
operators is the absolutely continuous subspace of 4. We
may define the scattering operator $ = (w™ )*w™ on each
partial wavespace and conclude that .S is unitary. We thus
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have completeness of the wave operators. The question of
asymptotic completeness, i.e., absence of the essential spec-
trum, requires additional investigation.
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Generalized completeness relations involving resonance states are constructed within the
framework of analytically continued symmetrized scattering kernels into the unphysical sheet of
the complex-energy plane. The bases states utilized are identified with complex-energy
generalized eigenvectors over an extended or rigged Hilbert space. The resulting relations are
uniquely defined and do not exhibit the usual divergence problems encountered with the

regularization methods.

PACS numbers: 03.65.Nk

L. INTRODUCTION

Resonances occur in many places in nuclear and parti-
cle physics. Our main interest lies in the off-energy-shell con-
tinuation of the two-body ¢ matrix in the presence of reson-
ances {e.g., in 7-N and N-N scattering). Some time ago,
Haftel’ extended the method of Baranger et al.” of continu-
ing the off-shell # matrix when the uncoupled partial wave
eigenchannel has only scattering states to the case when a
bound state is also present. The same problem was consid-
ered by Sauer and Sevgen® in the presence of inelasticities.
Working in the spirit of these approaches,'= we need to have
a completeness relation for resonance states which restrict
the arbitrariness in the full off-shell # matrix to only the sym-
metric part of the off-shell function.*’

Because of their violent behavior, resonance states are
not usually used as a basis of eigenfunction expansion. It
turns out that the main problem that arises when the scatter-
ing process is mediated by resonances (among other possible
states) is the construction of appropriate completeness rela-
tions which bring about the presence of resonance states in
an explicit way.

A number of studies®'* have been made to define the
integral properties of resonance states and to construct ap-
propriate completeness relations involving such states. Var-
ious restrictive conditions, however, are usually associated
with such completeness relations (see, e.g., Ref.10). This has
consequently lead to nonuniqueness in establishing the orth-
ogonality and completeness properties of resonance states. A
brief outline of those attempts may clarify this point.

Berggren® made use of a regularization method due to
Zel'dovich’ to define the value of integrals over resonance
states. Based on this regularization method, Berggren® also
constructed a completeness relation in which a discrete set of
bound (orthonormal) and resonant (biorthonormal) states is
completed by a set of continuum states. The analytically
continued complex energies and asymptotic wavenumbers
of this continuum part are chosen along a specified integra-
tion contour which determines the properties of the expan-
sion, and the complete set is not a simple extension of Hilbert
space.

“'Present address: Rochester Institute of Technology, Rochester, New
York 14623.
 Affiliation 1978-79. USDOE Contract number W-7405-ENG-82.
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In another method, More and Gerjuoy® obtained
anomalous normalizations of the resonance wavefunctions
which are determined by the energy dependence of an effec-
tive Hamiltonian. Garcia-Calderon and Peierls® obtained
normalization constants related to the residues of an outgo-
ing Green function which defines the resonance states, and a
completeness formula was derived®'® which involved a cer-
tain part of the continuum. Romo'' used analytic continu-
ation to develop a generalization of the inner-product inte-
grals for resonances based on the S-matrix approach. Kim
and Vasavada'? worked also in the S-matrix formalism and
treated the normalization of the resonant states differently.
In the work of these authors,'? a completeness relation in
which all resonances are screened out from the continuum
was obtained. Thus in the work of Refs.6, 11, and 12 both
resonance and bound states contributions to the complete-
ness relation are treated on the same footing.

Underlying the nonuniqueness in defining the integral
properties of resonance states are the divergence difficulties
inherent in the coordinate-space representation of these
states. This has to do in a sense with the fact that the reso-
nance states considered®'* do not span the entire Hilbert
space. Avoiding such nonuniqueness seems, therefore, to be
intimately connected with the proper description of reso-
nance states in Hilbert space (see Sec. IV).

In the present paper, an attempt is made to overcome
the above limitations by utilizing biorthonormal resonance
states defined in terms of symmetrized scattering kernels'>~"?
analytically continued into the “unphysical sheet” of com-
plex energies. As such, the resonance states are treated as
generalized eigenfunctions in a complex-energy representa-
tion which lends itself to the avoidance of the divergence
problems associated with coordinate-space calculations.
The resonance states considered form complete bases states
in an “extended” or rigged Hilbert space (see below).

In addressing the problem of constructing appropriate
completeness relations for resonance states, the present
work extends to the general treatment of unstable states in
scattering theory and their generalized description in quan-
tum mechanics.'®>® Using functional analysis tech-
niques,?!*? resonances are described within such ap-
proaches'®~° in terms of generalized eigenvectors with
complex eigenvalues in a rigged Hilbert space formula-
tion.'**? By analytically continuing the expansions of sym-
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metrized resolvent scattering kernels into the unphysical
sheet of the complex-energy plane, the generalized bases
states given for resonances in the present work are identified
in a natural way with rigged Hilbert space structures.***'3

In Sec. II, a brief summary of the properties of symme-
trized scattering kernels in Hilbert space is given. Extension
to complex energies and analytic continuation into the un-
physical sheet is considered in Sec. III. Generalized com-
pleteness relations involving resonance states are construct-
ed in Sec. IV. Section V contains a conclusion.

Il. SYMMETRIZED SCATTERING KERNELS IN HILBERT
SPACE

In this section, results based on the symmetrized scat-
tering kernels of Meetz,'* Weinberg,'®'” and Sasakawa'® are
briefly outlined, and their properties which have direct bear-
ing on our results are discussed.

Let AV be an interaction and
G, (E + ie) = (E — H, + i€)~ " the two-body Green’s func-
tion, with H,, being the kinetic energy operator. Defining the
symmetrized scattering kernel,'’-92425

K=E)=|V|"*G&ENV|', (2.1)

the outgoing and ingoing solutions are given by a “modified”

Lippman-Schwinger equation®*® (assuming no degener-
acy) as
|V "2 =(E)V|'>=¢(E)+AK *(E)|V|'*Y*(E).

(2.2)

The properties of K *(E ') depend upon the potential.
We confine ourselves to the class of potentials which make

these kernels square integrable,>* % i.e.,

K £|*= fdrjdr’|K *(r,rE)? < . (2.3)
In this case, K * (E) behaves as a Hilbert-Schmidt opera-
tor®® belonging to the (complex) space L 2.

The kernel symmetrization in (2.1} applies for V0. For
potentials which change sign, the “polar” form?*"8

K *(E)=|V|'?G&(E)V]|"(sgnV) (2.4)
should be used, where (sgn¥’) denotes a sign factor equal to

+ 1 for positive ¥and — 1 for negative V. The discussion in
this paper is restricted, for simplicity, to the symmetrized
kernels in (2.1). This will not affect our main results, and
extension to the form in (2.4) can be done in a straightfor-
ward manner. '

The symmetrized kernel K *{E ) is a two-sheeted func-
tion of E. The upper half E-plane is mapped onto the first
(physical) sheet and the lower half is mapped onto the second
(unphysical) sheet. K *(E ) represent the boundary values of
K (E') on the real axis in the first sheet

K=*(E)= lir—)réK(Ej; i€). (2.5)
Spectral decompositions of X (E ) can be obtained for all
E by investigating its properties in the first and second
sheets. On the first sheet including the real axis, K (E ) is sym-
metric and the completely continuous L ? operator has pure
point spectrum. '3-18:4041 Ttg resolvent*®*! K (1 — 1K)~ 'isa
meromorphic function of the coupling constant A with sin-
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gular values at '3

A=, \E), (2.6)
where the 7, (E ) are the eigenvalues of K (E), i.e.,

K(Ex,(E)=1,E),(E) (2.7)
and the y, (E) the corresponding eigenelements, viz.,

Xo(E)=n;EK(E)y,(E). (2.8)

On the negative real axis, the set {y, } is orthonormal:

X Xm) = B {2.9)
Then, for — o < E<0, K(E ) has the spectral
decomposition'®-184041

K(E)=2,(E).(E)® . (E), (2.10)

which is convergent in the mean.*® Since elements of the
form Ky are dense in L ?, the system {y, ] is complete,*’ and
the kernel K (E ) is normal, i.e., permutable with its adjoint:

KKT'=K'K. 2.11)

For positive energies, K (E + i€) is not Hermitian and
ceases to be normal so that its spectral decomposition into
the orthonormal set {y, } is no longer possible. It is still
possible, however, to construct an expansion in terms of

biorthogonal eigenfunctions by analytic continuation from
the negative real axis'® which yields

K (E + ie)= Y n,(E + i€)y,(E + i€) - y,(E + i€),
" (2.12a)
K (E — ie) = K (E + ie)=K *(E + i¢)
= 3u(E + i€l (E + i€) - x.(E + ie),

(2.12b)

with
NalE + i€) = 7(E + i€) = 7, (E — i€),
Xn(E + i€) = Y3(E + i€) = x,(E — ie).
Denoting z = E + i€, the eigenfunctions y, and y,, satisfy

(2.13)

K (2)a(2) = 0.(20Xal2) K (2)Xnl2) = 7 (2)¥a(2) (2.14)
and the biorthogonality relation
XnlXm) =80 (2.15)

Comparing (2.12) with (2.10), it is seen that the tensorial
product y, ® v, is replaced with the product y, - y,,, which
does not involve the complex conjugate. This results from
the fact that the analytic continuation of ||y, (E + ie)||* is
given by

|l (E £ i€)||* = (x.(E + i€}y, (E + i€)). (2.16)

It also follows that in contrast to (2.10) the expansions
in (2.12) have the property of being “complex normal,”i.e.,

KK'=(K'K)*. (2.17)

Thus, the biorthogonal system {y,,,¥.. } allows us to extend
the expansion (2.10) to positive energies. The resulting ex-
pansion in (2.12) converges in E + i€, implying that {y,,x, }
is a complete biorthogonal system'> of L 2.

Other choices of symmetrized scattering kernels are
also possible'®18:3442-46 a5 Jong as they lead to good conver-
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gence properties. In this regard, the symmetric kernel

K(E)=|V|'"?PG/E)|V|'?, (2.18)
where P denotes the principal value, has better convergence
properties at positive energies'® than the kernel in (2.1) and is
therefore more practical to use. In particular, the eigenele-
ments corresponding to the kernel (2.18) form a complete set,
and spectral decomposition is applicable (which permits also
use of the Weinberg quasiparticle approach in a straightfor-
ward manner'®"7).

The above discussion is equivalent to applying the
Fredholm theory*>*° to the completely continuous kernel
K (E ) for all E in the space L 2 and hence may always be ap-
proximated by a kernel of finite rank.'>-'®%*! The above
method, however, leads to expressions'>~*® which are easier
to handle than the corresponding Fredholm determinants.
In the next sections, we pursue and extend this discussion to
the complex-energy plane and obtain generalized complete-
ness relations for resonant scattering.

lll. ANALYTIC SPECTRAL DECOMPOSITIONS

Our aim in this section is to obtain spectral decomposi-
tions which exhibit the resonance states explicitly. To this
purpose, we extend the spectral definition of the operators
considered. In general, given a bounded self-adjoint linear
operator on a Hilbert space ##°, we can decompose®>—>°

H=H, o, (3.1)

where 77, has a discrete point spectrum and 5, has a con-
tinous spectrum. Making use of the resolvent kernel*®*!

R(z)=K(1 —AK)™!
=|V|"z—H) |V |'?, (3.2)

one may, accordingly, write the spectral decomposition

)&, | 1§ ¥ ¢
V 1/2 lgﬂ n + JdE R
| | z z—z, ¢ Ea: z—F

(3.3)
where |£,, ) specifies a set of discrete eigenstates forz =z, , a
real solution to an equation similar to (2.14), viz.,

K(2)8,) =n.)E.), (3.4)

and |£ *)=|V |"/*¢ = (E, a) specifies a set of continuum solu-
tions to (2.2), with & indexing possible degeneracies. In (3.3),
the integration is taken over a set of continuum eigenvalues
denoted by c. Further, the set {£ } consisting of {£, } and
{&*} form a complete orthonormal set:

(gn |§m> = 5nm!
(EUENE“E") =8(E — EVue s (3-5)

(€. EE) =0.

Resonances are now treated through analytic continu-
ation of the resolvent kernel in (3.3) into the unphysical
sheet. In doing this, it is known that if the integration con-
tour ¢ {corresponding to the real cut) is deformed into a curve
o in an allowable fashion which preserves the analyticity of
the integrand, the integral itself remains constant during de-
formation. Therefore, by deforming the integration contour
c into the lower half-plane while keeping its end points fixed
to a contour o which crosses the resonance poles at the

v ——
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points z, = E — iI"but avoids other singularities of the ana-
lytically continued integrand, one obtains, upon applying
the Cauchy residue theorem and noticing (2.16), the result

172 2 _ = 162246 |§a)<§ |
v lVl E,,: z—2z, +J;d ; z—2
+SResR )| (3.6)

where use has been made of
27ri2|§“)(§"| =R ~(z) — R *(2), {3.7)

which gives the discontinuity of R (z} across the cut ¢ as fol-
lows? from (3.3), with

R*(Z)=R(E+il)=|V|"HE+ i —H) '|V|'2
(3.8)

In writing (3.6), only the resolvent term R ~(z) appears
in the last sum since it is this term which may have resonance
poles in its continuation through the cut ¢ into the unphysi-
cal sheet. The term R *(z} remains analytic for Im z > 0 be-
cause it does not cross the real-axis cut.

Noting the association of the discrete (bound) states
{£, ] in (3.3) with residues from the first-order poles of the
resolvent kernel in the physical branch, i.e.,

1€ {E0 | (3:9)

and assuming that each point z,, in (3.6) is a first-order pole
(resonance) of R (z), the residue terms in the last sum of (3.6)
can be evaluated similarly.

Defining a set {£, ] at points in the physical sheet other
than those satisfying the bound-state solutions, then con-
tinuing these functions to resonance solutions at complex
points z, in the unphysical sheet, one gets

ResR (z)] =lim{z —z,)R (z) =

z=12z,

ResR ~(z)=ResR () = lim(z — z,)R (z) = £, )£, ]. (3.10)

By construction, the analytically continued eigenelements in
(3.10) above form a biorthogonal system {£,, £, } as follows
from (2.16) and the discussion in Sec. II.

Consequently, we are able to write for the resolvent ker-
nel the generalized spectral decomposition

M AL

. Ldz; ata)

In (3.11), the system {¢, £} consisting of {£,,£,} and
{£°, £] satisfies the biorthogonality relations:

(€16, = b,

(E2E“(2) = 8lz — 2B

(E,16) = (€16 =0,

which ensure its completeness in the space L °.

|§V)(§vl

Ve ——

(3.11)

(3.12)

IV. GENERALIZED COMPLETENESS RELATIONS

Let {(f) be an arbitrary element of (complex) L . As a
result of the completeness and orthonormality of the set
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{xn] in (2.7)—2.9), the Parseval identity
A1 = X Kxa (4.1)

holds true in L 2.

In the following, a generalized Parseval’s identity in-
volving the contribution of complex points in the unphysical
sheet as demonstrated in the set {£, £ ] is obtained.

Spectral decomposition in terms of discrete and contin-
uum eigenstates yields®’

A2 = SCFIEDE ) + j dE S(fIEDNELS). (42)

Applying analytic continuation through the cut ¢ into
the unphysical sheet, as done in Sec. I1I, one gets the follow-
ing result on deforming the integration contour and using
Cauchy theorem, taking into account (3.9):

112 = SUAENEN ) + SCLENEN P
+fdzz<f|§°><§"“|f>, (@.3)

where the contour o is taken as in (3.5).

The completeness relation in (4.3), in contrast to (4.1), is
defined over an “extended” or rigged Hilbert space?'~* of
generalized eigenvectors (locally integrable distributions)
corresponding to complex eigenvalues. In the terminology of
functional analysis,'%???>-*? a rigged Hilbert space is repre-
sented by a Gel’fand triplet #CL*C &, where & is a dense
subspace of L % with nuclear embedding and @ is the dual
space of @. Generalized eigenfunctions corresponding to
complex eigenvalues given in (4.3) are then elements of the
enlarged Hilbert space @D L 2. The use of rigged Hilbert
space structures provides a powerful tool for the study of
unstable and resonance states in quantum mechanics, '*-3°
whereby the restrictive nature of the usual Hilbert space is
overcome.

In this connection, it is worth nothing that, in the ab-
sence of bound states, the last two terms in (4.3) imply the
decomposition of the rigged Hilbert space #C L 2C @ into
both “discrete” and “‘continuous” parts corresponding to
the discrete and continuous contributions of the “complete”
set of generalized eigenfunctions.

Since relation (4.3) is defined over an entire rigged Hil-
bert space, restrictions associated with “undercomplete-
ness” or “‘overcompleteness,” which often give rise to non-
uniqueness in constructing completeness relations for
resonance states,®*'? are avoided. Provided the resolvent
kernel has a well-defined analytic continuation from Eec to
Eeo, the existence of such a generalized completeness rela-
tion allows the expansion of any integral property, e.g., norm
or inner product, in terms of generalized bases involving res-
onance states. Thus, for two arbitrary functions f, ge®, one
has

(f18) = SUFIENE IR + S(FIENE. lg)
+ f dz S {FIEXV(Eg). (4.4)
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It should be noted that the generalized bases in (4.3) and
(4.4) are evaluated in a spectral representation correspond-
ing to complex-energy solutions according to (3.4). This
avoids the use of coordinate-space representation of reso-
nance states and the associated divergence problems.*’

Further, in view of (4.3) and (4.4), it is justifiable to write
the generalized closure relation

SIEE ] + SIENE | + f dz SIENE =1,
(4.5)

which is uniquely defined over the entire rigged Hilbert
space @ C L >C ¢ as mentioned before.

V. CONCLUSION

The generalized completeness relations obtained in this
work (Sec. IV) should prove of relevance in various applica-
tions where resonance scattering can take place. They pro-
vide a generalized scheme for eigenfunction expansions
based on complex-energy generalized eigenfunctions which
span an entire rigged Hilbert space.

In this regard, the present completeness relations can be
applied, for example, to sum rules in nuclear physics,® lead-
ing to well-defined separation of resonance contributions as
contrasted with other approaches.®'* Further, the expan-
sion of the multichannel Green function, half-shell and off-
shell scattering amplitudes, using these generalized com-
pleteness relations is within immediate reach. It should
prove also useful to apply these relations to few-body prob-
lems involving two-body resonant ¢ matrices.*’
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An expression is derived for the sixth nonzero term in the WKBJ approximation. The six-term
WKBIJ approximation is applied to calculate the eigenvalues for the potential ¥ (x) = 1kx? + ax®,
k>0anda>0. Atlow values of A [ = ai/( uk %)!/?], the calculated results are in excellent
agreement, to 15 significant figures, with those of Banerjee et a/. for all quantum numbers. At
medium and high values of A, the calculated results are poor at low quantum numbers, but
improve rapidly as » increases. A 15-significant-figure accuracy is achieved at n = 10 for

A = 0.05, and at about n = 15 for A = 20 000. For A = 0.5, eigenvalues are calculated to 20
significant figures and an argument is presented to show that by n = 50, the calculated value is
correct to 19 significant figures. The accuracy further improves at higher quantum numbers.

PACS numbers: 03.65.Sq

I. INTRODUCTION

Recently, we have used' (hereafter referred to as Paper
I) the five-term (or eighth order) WKBJ approximation to
calculate the eigenvalues for the anharmonic oscillator
potential,

Vix)=1kx* +ax*, k>0 and a>0. (1)

Numerical results were compared with those of Hioe and
Montroll.? It was found that at n = 4, a seven-significant-
figure accuracy was achieved and at n = 6, a nine-signifi-
cant-figure accuracy. References to previous work on this
problem may be found in Paper I. Another recent investiga-
tion of the energy levels of potential (1) by the WKBJ ap-
proximation is that of Hioe et al.”

Banerjee and co-workers, in two recent papers,*® have
used an interesting method® to calculate the eigenvalues of
potential (1) to 15-significant-figure accuracy. Their ap-
proach is similar to that of Biswas et al.,” but differs from it in
one important respect—the introduction of a scaling param-
eter. Banerjee ef al.*> use an appropriately scaled basis for
the expansion of each eigenfunction:

vd)=e= 3 a,x", )

where the scaling is introduced through the parameter a.
For an effective expansion the scale of coordinates is chosen
so that sufficient lower members of the basis functions
{x™e ~ '} in the expansion (2) have appreciable values in the
region of oscillations of the actual eigenfunctions and decay
outside the region of oscillation. Banerjee et al.* give argu-
ments to show that the scaling parameter « will depend on »
and A according to the following formula:

a(nd)=4+ Bn'PA", (3)
where the constant B is adjusted empirically. The effect of
using this scaled basis is remarkable. Banerjee et al.* are able

to calculate the eigenvalues in any realm of n and A to high
accuracy.
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This has prompted us to examine the improvement
which may be obtained in the eigenvalues for potential (1) by
taking into account the sixth nonzero term in the WKBJ
approximation. In the present paper, we first derive an ex-
pression for the sixth nonzero term in the WKBJ approxima-
tion, and then apply the six-term (tenth order) WKBJ ap-
proximation to calculate the eigenvalues for potential (1).
The results are compared with those of Banerjee et al.*®

il. SIX-TERM WKBJ APPROXIMATION

Using Dunham’s® approach, we have derived the fifth
nonzero term in the WKBJ approximation in a previous pa-
per.’ The discrete energy eigenvalues are determined in the
WKBJ approximation by the following condition:

" ﬁ i Sgo ( ? )Sys (x) dx, ()

where 7 is the quantum number, x is in a complex plane cut
along the real axis between the classical turning points, and
the integration is carried out along a contour C enclosing the
two turning points but no other singularities of the integrand
¥,{x), and not crossing the cut.

Recursion formulas for determining y, are given in Ref.
9, which also contains explicit expressions for y,’s up to and
including y,;. As shown in that paper, the contribution to (4)
due to ys, s, y4,+- vanish, and it is only yg, y,, ¥,, V4, that
contribute nonzero values to the right-hand side of (4). Equa-
tion (4) may be rewritten as

nti=I+ L+ L+ (5)
where 1, I,, I,,-- represent the contribution due to y, y,,

Ya,-, respectively. Explicit expressions for 1, I,, I, I,, and I
were obtained in Ref. 9. Here we derive an expression for I,

the next nonzero term in the right-hand side of (4). The nth
derivative (n > 3) of V shall be represented by ¥
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_ 1/219
I, = —ﬁ9§ Yolx)dx = — W#]—§ {350229325 V'lo(e - V)_z‘)/2
2r Je 28 c

+ 14009173007 "%V "(e — V)~ "/ 4 160[2350680F V'™ + 11893561F 'SF "2](¢ — V')~25/2
+ 128[525825F 'SV 1 6755070V 'SV " V'™ + 840519 "4V "3)ie — V)~ 32

+256[27120¥ V9 4 522510V "4 " V'™ 4 393465V "4V "* + 1937784V 3V "2V ™ + 696101V 2V 4]
X(€— V)72 1 1024[35160F V" V'™ 4 13560V >V " V5 4 58938V 2y " V"2
+ 45738V 2V "2V Y L 80364V 'V PV — 1087V "€ — V)02

+4096[900V 2V "V 4T85V (VW 4 25521 'V VY
+ 1224V 72V £ 2321V "2V 114V Y (e — V)12

+ 16384 [40V VY 1 68V " V"V — 3V (V)2 ](e — V)15 4 32768(V (e — V)~ '¥/2} dx. (6)

We perform integration by parts repeatedly to simplify the above expression to a form in which V'’ is absent. This gives us

[h/(zu)l/z]‘) "5 —19/2 n2yrm2 w3y 4) —17/2
Iﬁ:W 25409475V ">(e — V) + 780[2632F "2V "% + 23991V "}V 9](e — V)
. [of

+ 52[236067 "2V + 91521 "V "V ) 4 46215F "(V ) 4 37601 "2V )(e — V)~ 1372
+40[1001F " V' 13520 F 7 4 3146V WV 4+ 416(F 9P )(e — V)~ '¥/2 4+ 560V 10 — V)~ 11/2] dx. (7)

The apparent nonintegrable singularities in the above expression can be removed, and the final expression may be written
as

1/219 9 Ty
= — e 7665d—f VS — V)2 dx
48712 i ),

8 12
_d_ [5264VII2V/”2 + 47982V”3V(4)](€_ vV —1/2 dx
de® J,

7 £]
+ g—7f [23606V "2V 1 9152V " V"V 4 46215V "(V ) 4 3760V "V ¥ ](e — V)~ "/2dx
€ Jr,

6 4}
—5 g—éf [100LV " V® 4 3520 P 4 3146V 9V 4 416(F O)2](e — V)~ "2 dx
€ J,

s £)
+3855—€5f Vi%e — V)~ '2dx}. (8)

Here r,, r, are the classical turning points defined by e — ¥ (x) = 0.
The six-term (or tenth order) WKBJ approximation may then be written as

”+§=11+Iz+13+14+15+16- 9)

A. A special case

In view of the fact that the derivation of I, is lengthy and cumbersome, it was felt desirable to check its correctness by any
test which may be possible. One such test is provided by considering a special case,

Vix)=Cx", N=246,... (10)

For this potential, Bender et al.” have used the MACSYMA computer program at MIT to perform the algebraic manipulation
required to calculate the first eight terms in the series in (5). For the potential (10), our expression for / gives
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1/219 9 £
I= — __[“ﬁ(::iz ] [7665C5N5(N s dgf XN =10 (e _ CxN)= 12 dx

8 4]
C*N*(N — 1/(N — 2)(53246N — 154474) :—68 f XN —19¢ _ Cx¥) V2 dx

+ CN(N — 1PN — 2)(N — 3)82733N? — SI34B1N + 837666) < f W10 _ G}~ dx
— SCN(N — 1PN — 2N — 3N — 4)[11(V — SNV — 6)(123N—— 701)
+ 26(N — 2)(N — 3137 — 669)] %Z.fxm- e — CxM) 12 g
4 38SCN (N — 1V — 2)(N — 3V — 4N — SV — 6N — TN — BV —9)
f, ~ 10 — CxV)!72 dx]. )

Here r, = (e/ C) "V and r, = (¢/C) /*. Note that when m is any positive integer and N is any positive even integer,

Jv';me_lo(e_ CXN)_I/Z dx = d'"+4 [ 2(77)1/26""—1/2—9/Nr(m __9/N)
dem+* ), de"+* | NC™="I'(m +1—9/N)
_ 2(77.)1/26—9/2—9/N1—~(m_9/N)
NC™ ="' (~7/2—9/N)

dm+4

Therefore

16= B [ﬁcI/N/(Z”)I/j/]9€—91N+2)/2N F(l _ 9/N) (N— 1)(N_ 3)(N_ 9)
24(m)* 212! r(—1/2-9/N)

X [3(V — 172N — 9){T665(N — 1)4N — 9) — (N — 2)(53246N — 154474)}

4+ (N — 1N — 2)(2N — 9)(82733N 2 — 513481N + 837666)

— 5N = 1)V — 2)(N — 4){ 11(N — 5)(N — 6)(123N — 701) + 26(N — 2)(N — 3)(137N — 669)}

4 385(N — 2)(N — 4)(N — S)(N — 6)(N — T)(N — 8)]. (12)

On setting #/(2u)'/? = C ~ /¥, this gives

6-9(N+2|/2N[*(1 _ 9/N)
24(m)"2120I(— 7/2 — 9/N))

= — (N — 1)V — 3)(N — 9)(2N + 3)(320N° — 504N'*
— 4854N — 957N 2 4+ 14754N + 12801). (13)

The above expression is the same as the corresponding term obtained by Bender ez al.'®

1. APPLICATION TO THE ANHARMONIC OSCILLATOR

The evaluation of the terms I,, I,, I;, I, and I for the potential (1) has been carried out in paper I, and their values
obtained in terms of K (@) and E (), the complete elliptic integrals of the first and second kind. We shall find it convenient to
express our results in terms of 4, w, and 7, which are defined by

A =at/(uk?)'?, (14)

w= [} —}(1+ 16ae/k 213, (15)
and

=401 —w?) or 1-—2w*=(1—n"2 (16)

In Paper I, we had used 2, which is equal to 77/4. The use of 7, instead of z, helps to reduce the size of many such numerical
coeflicients which are very large and which occur in the course of the evaluation of the integrals and in the final result, and
facilitates the derivation. The evaluation of I is similar to that of I, the evaluation of which is given in the Appendix of Paper

I. Hence we only give the final expression for I,. For the sake of completeness, we also include the expressions for I, to I in
terms of 7.
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1
5= 3/4
6mA{l — )

{7K (@) — 21 — 7)'*[E (@) — (1 - 0" )K (@)1},

24141 — 3/4
1= 200 gy K o) — 2+ 1 E o) — (1 - 07K )],
31 19/4
I3=—/{~—(1L[[896n—708+ 3_3__5_6.]1((60)
455 7 7’
7 38
+(1—n)‘”[~1792+ 2z, ][E(w)—(l—a)z)K(w)]],
"I 7
51 _ .15/4
[ 160 =7) {(1—77)”2(6348817—34464+ 27, ST 441 1984 )K(w}
3157 7 47’ N 7*
+(126976n_100672+ 2906 _ 215 10189 | 149% 15872)[E(w)"(1_w2)]((w” ,
Ui 2y 4n 7* 7’
2971 _ \21/4
p= A= [(—1560576q2+2078848n—58484O+ 20899, 32591
3157 16m 327?
7253 55079 23532 24384
- 3 ra s 6 )K(w)
2567° 167 7 7
+(1—77)”2(312115217—1816832+ 26512 123 87273
7 87’ 167°
316085 15169 133392 195072
4 s 3 + 7 )[E(a))—(l—a)z)K(w)]],
1287 7 7 U
47901 N27/4
L= — —li/—l-—(—l-—-ﬂ)—[(l—n)”z(l46513920772——16588230477+37772442— 371691 18681849
103957 87 102477
11535075 217913259 _ 1595181 2828520 1604833 1144640 ) Kol
20487 163847"° 20487° 32 Y 7
+(293027840172— 405021568y + 12414636 S5 | 1348003 BESR6SDL 128838999
n 51277 s127° 81927°
1865978121 43880145 | 30272717 _ 13361012 9157120 )[E(a))—(l—a)Z)K(m)]] )
163847° 1287° 877 7 7° ‘

IV. RESULTS AND DISCUSSION

The energy eigenvalues were calculated by solving (9).
The procedure is explained in Paper I. The parameter A and
the energy E in the present paper (as well as in Paper I) are
related to A and E of Banerjee et al.*® as follows:

A (our) = § A (Banerjee),
E (our) = | E (Banerjee).

Eigenvalues were calculated for certain values of A and n for
which results have been obtained by Banerjee et al.*> We
compare our results with those of Banerjee et al. in Tables 1
and II. We shall represent the eigenvalue obtained from a j-
term WKBJ approximation by E . The series expansion in
(4) is, in general, semiconvergent.' "' Consequently, if in any
case |1; , , /I;| is greater than 1, the series in (5) has to be
truncated at /;. For medium and large values of 4, such a
situation is encountered at very low quantum numbers

{n = 0,1, or 2), where |I/L| is greater than 1. Such cases are
omitted from Tables I and I1. Our calculated eigenvalues to
15 significant figures are shown in Table I along with those
of Banerjee® (represented by E #) in Table I. The difference
between the two is shown as [E® — E 2] % 10" —7, where p
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r

is the number of digits to the left of the decimal point in a
calculated value, in column 5. This type of representation
shows the difference in terms of the number of significant
figures, without regard to the decimal position. Thus the
extreme right hand digit of any number in column 5 of Table
I corresponds to the 15th significant figure. Banerjee® esti-
mates the accuracy of his results tobe + 1in the 15th signifi-
cant figure. The eigenvalues tabulated in column 4 of Table I
are half of those given in the paper of Banerjee.® Thus one
may consider the uncertainty to be + 4 in the 15th signifi-
cant figure, but because of the round-off problem, a more
realistic estimate will be + 1.

At low values of 4 {<0.005), our results are seen to be in
excellent agreement with those of Banerjee® for all values of
the quantum number n. At medium and high values of 4, our
results are poor at very small quantum numbers, but there is
a rapid improvement as n increases. By n = 10 a 15-signifi-
cant-figure accuracy is achieved for 4 = 0.05. As 4 in-
creases, the quantum number at which this accuracy is at-
tained slowly inches upwards. For A = 20 000, this accuracy
would occur at about n = 15. The trend of errors in column §
of Table I indicates that at higher quantum numbers, the
accuracy is expected to be even better.
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TABLE L. Calculated eigenvalues for the anharmonic oscillator from the six-term WKBJ approximation compared with those of Banerjee ez al,, E®. pis the
number of digits to the left of the decimal point in the calculated value.

A n E® E® [E® —EB]x101-7 i n E®© E® [E® —E®]x10'" -7 o

0.00005 0 0.500037493440100 0.500037493440100 0 5 2 8.31763939452u66 8.31796074620690  -32135168224
1 1.50018744846806 1.50018744846806 o 12,.9031534730702 12.9031381075278 153655424
2 2.50048730796919 2.50048730796920 0 4 17,942584¢292248 17.9425856111269 -6819021
3 3.50093700833383 3.50093700833383 0 5 23.3645404826557 23.3645404504085 322471
4 4.5015364860223) 4.50153648602231 0 6  29.1206493687030 29,1206U93698766 -11736
5  5.50228567756483 5.50228567756485 -2 7 35.1755259697227 35.1755259696173 1054
6  6.50318451956137 6.50318451956 135 2 8 41.5019335188017 41.5019335187926 90
7 T7.50423294868150 7.50423234868150 [+ 9 u4B.0T781314906026 48.0781314505988 37
8  8.50543090166433 8.50543090166435 -2 10 54.8862854321677 54, 8862854321665 12
9 9.5067783153183x% 9.50677831531835 -1 100 1103.21433253216 1103.21433253216 [
10 10.5082751265213 10.5082751265213 0 1000 23569.3184776116 23569.3184776116 0
100 101,247039929621 101.247039929621 0 50 2 17.4360350985341 17,4369921309974 19570324633
1000 1067.12127261611 1067.12127261610 0 3 27.792693kuL3284 27.1926457858015 476585268
0.0005 0 0.500374346326593 0,500374346336595 Q 4 37.9384998188621 27.9385020143348 -21954728
1 1.50186987408436 1.50186987408437 0 5  49,5164187636862 49,5164 186577037 1059824
2 2.50485593639405 2.50U85593639406 0 6  61.8203488092129 61.8203488133390 -L1261
3 3.50932629602876 3.50932629602876 0 7 T4.772B2B7219740 T4, 7728287216440 3300
4 4.51527478303736 4,51527478303736 0 8  88.3143279788785 88.3143279768570 215
5  5.52269529358966 5.52269529358965 1 9 102.397387256482 102.397387256473 10
6 6.53158178883924 6.53158178883925 -1 10 116,.983112938121 116.983112938118 3
7 7.54192829381299 7.54192829381300 -1 100 2371.0805596604% 2371.080459660k4 0
8  8.55372889632674 8.55372889632675 -1 1000 50752.0565830495 50752.0565830495 0
9 9.56637774592613 9.56697774592615 -2 500 2 37.3384925248442 37.3407021000824  -22095752382
10 10.5816590528519 10.5816690528519 0 3 58.3017104648547 58,30159946864685 1109962082
100 107.219226645926 107.219226645926 0 4 81,4011819434597 81.,4011870984875 -51550278
1000 1409.24275880910 1409.24275880910 o S 106,2G7091954837 306.29709 1704867 249970
0.005 0 0.503686836040688 0.503686836040690 0 6 132.759975829273 132.759975839140 -9867
1 1.51826265225667 1.51826265225668 0 7 160.622380137948 160.622380137178 771
2 2.54696956637115 2.54696956637116 0 8  189.756655589411 189.755655589364 ug
3 3.58928659035025 3.58928659035025 0 9 220.057266116850 220.057266116828 22
4 4.64473990815594 4.65473990815595 4] 10 251.4431986U2365 251.403199642358 7
5 5.71289632309315 5.71289632309315 0 100 5105.67997547800 5105.67997547800 0
6  6.79335790079480 6,79335790079480 0 1000 109329.638980615 109329.688380615 [+
7 7.88575754252129 7.88575754252130 1 5000 2 50.33812U5572672 80,1429562058560  -48317485688
8  8.98975529185561 8.98975529 185560 1 3 125.475615120816 125.475371045856 243174960
9 10.1050352263980 10. 1050352263980 0 4 175.217936794075 175.237948107763 -11313708
10 11.2313028210831 11.2313028210831 o S 228.832288050985 228.832287501845 549140
100 141.681535142538 141.681535142538 0 6  2B85.823895787974 285.823895809713 -21739
1000 2509.87095366631 2509870953666 30 0 T 345.531728819376 345. 831728617686 1690
0.05 0 0.532635890218554 0.532642754771860 -686455331 8  L0B.57B43748uHE9 408.57R437484368 100
1 1.65343524348234 1.65343600657646 23690590 9  473.842980833087 473.842980833039 48
2 2.87397963202150 2.873979634k1578 -239528 10 S41,444259001110 S41,444259001095 15
3 4.17633891279824 4.17633891289288 -946Y 100 10998.6201372634 10998.6201372635 0

4 5.54929781127881 5.54929781131650 -3769 1000 235537.964187a79 235537.964 187979
5 6.98456309886228 6.98496309887 140 -912 20000 2 127.501149803157 127.508838644787 ~7688841630
6 8.47739734306955 8.47739734307205 ~250 3 199.145510566688 199. 145123478029 387088658
7 10.0219318020935 10.0219318020943 -8 4 276.100219300728 278.100237315262 -18014534
8 11.6147760899694 11.6147760899696 -3 5  363.201844098700 363.201843224176 874523
9 13.2527773762682 13.2527773762683 -1 6 453,664875757558 453, 664874792195 -34637
10 14,9332626173356 14.9332626173357 -0 7 545,916140662283 548,916 140659590 2693
100 252.448468315049 252,448468315048 0 8 648.515328513767 648.515328513610 157
1000 S147.03066134697 5147.03066134695 2 9 752,111522526102 752, 111522526025 77
10 859.417217943562 859.417217943540 22
100 17458.8967468885 17458.8967u68885 0

1000 373891.710751417 373891,710751417

Sometimes the degree of anharmonicity is represented
by a, where « is related to A by

a =/12/3/(1 +/{2/3)'

(18)

The two extreme values of @ are 0 (harmonic oscillator) and 1
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(quartic oscillator). Thus @ = 0.5 (which corresponds to

A = 1) may be considered to be a “midway” point between
the two extremes. Banerjee et al.* have calculated eigenval-
ues for a greater number of quantum numbers for A = 0.5
(which corresponds to @ = 0.387). We have investigated the

R. N. Kesarwani and Y. P. Varshni
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TABLE II. Calculated eigenvalues from five- and six-term WKBJ approximations for A = 0.5.

E? [E®—E®|x10" ~*

A n E® E®© [E“” _ E(s)] X 10%° —-»
0.5 4 $.0287786535753370553 9.0287786709610363783 173856993230 9.02877871815165 -4719061
5 11.648720724227815370 11.648720727565973504 3338158134 11.6487207256116 19544
6 14.417669228861977967 14, 417669229695024079 833046112 T4 4176692297521 =571
7 17.320424160311568038 17.32042416056 3087955 251518917 17.3204241605556 T4
8 2G.345193040966719798 20.34510304 1054480167 87160363 20.3451930410532 13
9 23.u82504752803942995 23.482504752838246326 34303331 23.4825047528377 5
10 26.724551069818122133 26.724551069832814932 14692789 26.7245510698326 2
" 30.064761479572176306 30.064761479578961524 6785218 30.0647614795789 1
12 33.497515000620279447 33.497515000623616717 3337270 33.4975150006236 o
13 37.017937179549549272 37.017937179551280943 1731671 37.0179371795512 0
1 40.621752525382643344 40.621752525383584213 940869 40.6217525253836 0
15 44,305174400399051427 44.305174400399583493 532066 YL,3051744003994 a
16 48.064821022616716574 4B.064821022617028203 311629 48,0648210226170 0
17 $1.897650161136117781 51.897650161136306052 188271 51.8976501611365 -2
18 55.8009075225861363033 55.800907522586479963 116930 55.800907522580Y Q
19 56.772035366525081533 59.772085366525155975 TN 59.7720853665250 2
20 63.808888897677410953 63.808688897677459415 48462 63.8088888976775 [s}
21 67.909208662605154631 67.909208662305186824 32193 67.9092086623050 2
22 72.071097648199060180 72.071097648199081963 21783 72.0710976481990 1
23 76.292752102786945857 76.292752102786960846 14989 76.2927521027670 ¢
24 80.572495347256465501 80.572495347256475975 10474 80.5724953472565 [
25 84,908764000797666703 B4.9UB764000797674127 Tu24 84.9087640007975 2
26 89.300096183437875283 89.300096183437880615 5332 89.300096 1834380 -1
27 93.745121346475157409 93.7U5121346475161285 3876 93.7U51212864750 2
28 98.242551455110218967 98.2042551455110221817 2850 9. 2425514551105 -3
29 102.79117330221175725 102.79117330221175937 212 102.791173302212 0
30 107.38984 177458831113 107.38084177458831272 159 107. 389841774582 0
31 112,03747392630015194 112.03747392630015315 121 112,0374734926300 0
32 116.73304373968758154 116.7330437396B75824h 92 116.733043739686 0
33 121.47557747557256 105 121.475577U7557356176 71 12V U755 TTRT557, g
34 126.26414953074628379 126.2641405307062843Y 55 126 264149530740 0
35 131,09787873425992305% 131.09787873425992348 y3 1310978781351 260 Q
36 135.97592502500366384 135.975925025003661418 34 135.975925025003 o
37 140.89748646190965290 140.89748646190965326 27 140.897486L61910 0
38 145.86179652550667572 145.86179652550667593 20 185,86 1796525507 ¢
39 150.86812167558355163 150.86812167559355180 17 150,668 121679594 u
40 155.91575913485060894 155.915759 13485060908 4 159.915759 134651 L
[hl 161.,00403487242263695 161.00403487242263707 12 161.0040348T72422 G
42 166, 13230176504552823 166.13230176504552832 9 166.132301765045 0
43 171.29993791627328989 171.29993791627328993 8 171.299937916273 G
hy 176.50634511688983864 176.50634511688933870 6 176.505345116860 )
u5 181.75094743173960891 181.75094743173960896 5 181.750947431739 G
46 187.033189900046 14057 187.03318990004614061 4 187.033189900046 o
u7 192.35253733786026966 19243525373378602(970 4 192.352537337860 ¢
48 197.70847323263166370 197.70847323263166373 3 197.708473232632 0
49 203.10049872106401575 203.10049872106401577 2 203.100498721064 u
50 208.52813164242393733 208.52813164242393735 2 208.528131642424 9
100 517.77209156945416761 517.772091569454167¢1 a 517.772091569455 -1
1000 109664391855333463404 10966.391855333463404 0 10966.3918553335 0
10000 235591,88889540475932 235551.88889540475932 0 235551.888895408 0

In Table II, for A = 0.5, we show E ' and E® t0 20
significant figures, together with Banerjee ez al.’s values to
15 significant figures. Notice the very regular behavior of the
difference [E® — E®']%10?* 7, shown in column 5. The
difference [E'” — E “] s anticipated to be about an order of
magnitude smaller than [E® — E 1. Thus if any number in

question of the dependence of the accuracy of the WKBJ
values on 7 for this value of 4. While there is no known
method of obtaining exact error bounds for energy eigenval-
ues obtained by the WKBJ method, we have shown in Paper
I that a study of the behavior of |[EY+" — E'Y| is helpful in
assessing the accuracy.
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column 5 has ¢ digits, we can be reasonably confident that the
corresponding E  value is correct to (20 — ¢} significant fig-
ures. This indicates that a 20-significant-figure accuracy for
E '® will be achieved at about n = 55. Also, between n = 5
and n = 50, there appears to be an approximate linear rela-
tion between log (number of correct significant figures) and
log n. If this relationship persists for higher quantum num-
bers, we can estimate that at n = 100, E ® can be expected to
have a 24 significant figure accuracy. The difference between
E ©and E #is shown in column 7 of Table I1. It may be noted
that the figures in column 5 differ from the corresponding
figures in column 7 by a factor of 10°. An examination of
column 7 appears to indicate that occasionally the uncer-
tainty in the 15th significant figure of E ? is somewhat great-
er than + 1.

The available evidence indicates that among the various
methods which have been used for calculating the eigenval-
ues of the potential (1), for medium and high quantum num-
bers, the method of Banerjee et al.* and the WKBJ method
used in the present paper are about the best. Computational-
ly, the six-term WKBJ method is more efficient than the
method of Banerjee e a/.* The computer time required to
calculate an eigenvalue increases with » for the method of
Banerjee er al.; they quote a time of about 3 min for
n =10000 and A = 0.5 on IBM 7044. In our case, above
n~ 10, the required computer time remains more or less the
same for any n. For n = 10 000 and A = 0.5 the calculation
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of the eigenvalue by the six-term WKBJ method took less
than 2 sec on CYBER 74.
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We prove that given an asymptotically flat (in a very weak sense) initial data set, there always
exists a spinor field that satisfies Witten’s equation and that becomes constant at infinity. Thus
we fill a gap in Witten’s arguments on the nonnegativity of the total mass of an isolated system,
when measured at spatial infinity. We also include a review of Witten’s argument.

PACS numbers: 04.20.Cv, 02.30. + g

I. INTRODUCTION

For almost fifteen years there has been in general rela-
tivity a certain conjecture about the sign of the total mass. It
says that for any isolated system whose matter has nonnega-
tive local mass density, its total mass, measured asymptoti-
cally, must be nonnegative. This conjecture has concerned
many relativists, not only because of the important physical
consequences that would arise should it fail, but also because
of the general feeling that our understanding of the theory
should be such that we can resolve it.

There are two distinct regimes where one can measure
the mass (i.e., extract it from the asymptotic behavior of the
field), and therefore two distinct conjectures. One regime, at
null infinity, yields the Bondi mass'; the other, at spatial
infinity, the Arnowitt-Deser-Misner (ADM) mass.> We are
concerned here only with the second regime, i.e., with the
issue of the nonnegativity of the ADM mass.

There have been established a number of special cases of
this conjecture, in addition to several attempts to prove it in
general.>~'? Recently two general arguments for the conjec-
ture have been given—by Schoen and Yau' and by Wit-
ten.'> The validity of Witten’s proof depends on the exis-
tence, on an asymptotically flat initial data set, of a spinor
field which satisfies a certain first-order elliptic equation and
which becomes constant at infinity. In this paper we give a
proof of the existence and uniqueness of such a spinor field,
thereby completing Witten’s argument.

Consider an initial data set, (S,4,,,7,,), for Einstein
equations. It consists of S, a three-dimensional manifold
without boundary, 4_,, a metric of signature (- - -),and 7, a
second-rank symmetric tensor field. We assume our initial
data set to be smooth (C =), although this condition can be
weakened considerably. We say that initial data set
(S,h s, ) satisfies the local mass condition if

uz|J Y2 (L.1)
Here, 12 and J, are the scalar and the vector fields defined by
— u=nr* —r*r,, — R, (1.2)

J, =D’y — Thy), (1.3)

where R is the scalar curvature and D, the covariant deriva-
tive of (S,h,, ), and m=#“,. One thinks of S as a Cauchy
surface of some space-time, 4, as the induced metric, and

“Supported in part by the Aileen S. Andrew Foundation and by the NSF.
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7, as the extrinsic curvature of S. Then Eqgs. (1.2) and (1.3)
are the constraint equations of general relativity, and (u,/,)
forms the energy momentum of the matter, as locally mea-
sured by an observer at rest with respect to S. Thus, (1.1} is
the statement that the local energy momentum of the matter
is timelike.

We remark that only the initial data set (S,4,, ,7,, ) itself
will be used in what follows while, of course, its physical
interpretation lies in the full space-time.

Witten’s argument further makes use of spinors on
(S,h,). There follows a summary of their properties. It is
well known that in a three-dimensional Riemannian mani-
fold we can define two-component SU(2,C ) spinor fields. The
spinors at each point form a two-dimensional complex vec-
tor space and will be labeled by capital Latin indices, e.g.,
A ~. Indices are raised and lowered by the antisymmetric
symplectic spinor field €*? and its inverse €, ;. The SU(2,-C)
structure also gives rise to a Hermitian inner product. It is
implemented by an adjoint operation—~which maps spinor
field A # into another spinor field denoted by A # *—with the
following properties:

(A= —a4 A1,>0 (=iff 4, =0).

Three-dimensional complex vectors are represented by sym-
metric two-spinors, S,—S,5 = S 45, and the metric 4,, by

hiap)cp) = — €4(c€p - The real vectors are those which
satisfy
Sip= — (SAB)t

and so, for any spinor 4 4,4 [{A,, is always a real vector.
Thus, for example, for S, real,

SpS*) = — 85,5 = —5,8>0.

We also introduce a derivative operator on spinors, D

= D, ,,, which satisfies the usual rules of the covariant de-
rivative and which, when acting on a real scalar, yields a real
vector.

One can derive all these properties of SU(2,C ) spinors by
reducing the SL(2,C) spinors of space-time to SU(2,C)on a
spacelike hypersurface S (see e.g., Sen'®'".) Then the adjoint
operation arises naturally as 4 ™ = V2t 487 . wheret“®'is
the spinor form of the timelike vector orthonormal to S.

We are now ready to review Witten’s argument.'* In-
troduce the operator & ,; whose action on spinor fields is
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1
D yghc =Dypghc + —— T 5cAp,
aglc astc T Tasc Ao

(1.4)
where 7,5cp = T a8cp) is the spinor representation of the
tensor field 7,,.'* Consider now the identity,"

f,l (G 3 DPAC)dV
S
- %j{(wa V(D aphec)
S

+3( ey — 275 )A M) av

+—;—fD“(l g As)dV, (1.5)
S
obtained by integrating the left-hand side by parts, and then
using the constraint equations (1.2} and (1.3), and the con-
tracted Ricci Identity, DD 4 ¢, 7" = — (R /8)75.
Now, let S€ be any solution of
(1.6)

Dy DEBLC=0,
c20

with B € going asymptotically to a constant spinor 5.
Then, for this S € the left-hand side of identity (1.5) is zero
and therefore, using Gauss’s theorem, we obtain

limf [BL.9.8°]d 3

A —_

- f ((DIBBV(D 1pB) + Y sy — 2T 2B ™) ¥,
S

where the limit is that in which 2, a topologically S 2 surface,
recedes to infinity and d 2 is the surface element normal to
2. Witten has argued that the limit of the surface integral in
(1.7), provided the initial data set is asymptotically flat in a
suitable sense, is given by

lim [ [5L9,81d.3 = §Ee"s — 2P B Bon

: (1.8)

where E and P ", (regarded as an asymptotically constant
vector field) are the ADM expressions for the energy and
momentum, respectively, and 85 is the value of B ¥ at infin-
ity. Thus, since for an initial data set satisfying the local mass
condition the left-hand side of (1.8) is explicitly nonnegative,
and since B is arbitrary, we conclude with Witten that

E>|P,P°|'?, (1.9)
that is, that the total mass is nonnegative.

It immediately follows from (1.7) and (1.8) that the van-
ishing of E (and hence P,} occurs only if both u = 0 (and
henceJ, = 0), and & ;B = 0. It has been shown by Sen"’
that any space-time having an initial data set that admits a
nonzero spinor field satisfying & ,,8. = 0, is at least of Pe-
trov type [3,1]. It is very likely that the only asymptotically
flat space-time of type [3,1] or more special is flat space-time.
Thus, one expects that the only one having zero mass is Min-
kowski space-time.

To summarize, Witten’s argument shows that the total
mass is nonnegative, is the sense of (1.9), provided there ex-
ists a spinor field B € satisfying Eq. (1.6).

Thus, to complete Witten’s proof, it suffices to show the
existence of such a solution.

Existence Theorem: Let (S,4,,,7,, ) be an initial data set
that satisfies the local mass condition and is asymptotically
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flat (as defined in Sec. II). Then, for any £ §, a constant spinor
field (in the sense of Sec. II), there exists a spinor field 5 €,
satisfying the equation

QAngﬂc=0’

with B € approaching 3§ at infinity.

Its proof is given in Sec. II. As suggested by O’Mur-
chadha, it is based on the fact that Eq. {1.6) comes from a
variational principle. We also show there that the solution is
unique.

Il. EXISTENCE AND UNIQUENESS

Before proving the theorem, we must define asymptotic
flatness of an initial data set. Our definition, considerably
weaker than those commonly used, requires only what we
shall need in the proof.?!

Definition: An initial data set (S,A4,,,7,,) is said to be
asymptotically flat provided:

{1) There exists a flat metric 7,, on .S — K, where K'isa
compact set, such that for some C'> 0 and any vector /¢,

C ' 1°1°<h,, 1°1°<Cy,,1°1°,
and (S — X, 5., ) consists of a finite number of connected

components, each of them isometric to Euclidean space mi-
nus a ball.

(2) |V by |?, 7.y, 1, and [J °| are all integrable. Here
n

V., denotes the covariant derivative on (S,7,,)-

It will be immediate, from the proof of the theorem, that
the above conditions are the weakest possible that make the
integral in the right-hand side of (1.7), and hence the total
mass, to be finite.

The plan of the proof is as follows: First write 8 € and
B plus a spinor field B €, which belongs to a certain Hilbert
space H. Substitution into (1.6) results in an inhomogeneous
equation on B €. We then define a certain complex-valued,
continuous, linear functional on H. It gives rise, by the Riesz
Theorem, to a spinor 3 €, solution of the weak {in the sense of
distributions) form of the inhomogeneous equation. The el-
liptic character of the equation ensures that this solution is in
fact smooth, and so a solution of the strong form. Finally we
prove uniqueness.

We first define the Hilbert space H. Let H be the Hilbert
space obtained as the completion of C § {smooth and com-
pact support) spinor fields under the norm

lofz= j (D4 D 4c0F) dV. 1)

Note that for C § spinors (2.1) is positive definite [as follows
from integrating the right-hand side of identity (1.5)]. Thus,
{2.1) is indeed a norm and therefore H a Hilbert space.

Two important properties of the elements of H will be
derived from the following Lemma.

Generalized Sobolev Lemma: Let (S,h,,,7,,) be an as-
ymptotically flat initial data set satisfying the local mass con-
dition. Then H, defined as above, is a subset of L,.22 That is,
for some C > 0,

1A I >C f A, P dV
AY
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for any A “eH.

This lemma is proved in Appendix A by generalizing
the standard Sobolev lemma®® on flat R 3, as suggested by
Geroch. A similar lemma has been discussed by Schoen and
Yau.'

It is immediate from the generalized Sobolev lemma
that the elements on H are measurable spinor fields (and so
are distributions). There also follows from the lemma the
result that, given any C & Cauchy sequence on H a2, (hence,
converging on L to some a*), 2% ,a? weakly converges to
the distributional derivative 22, a” of a”. To see this, con-
sider any o, smooth and of compact support. Then

lim

n—s oo

J [‘TM‘QAB‘If:3 — (D 34 UA )JraB ] av '
s

= lim

n—oco

[@ stz ~amav |

<"lim “gBAaA ”L(,/,”af —a’ ”L(,
—> 00

=0,
where we have used Holder’s inequality. From these results,
in turn, it is clear that the expression for the norm, (2.1), not
only makes sense for C §° spinors but for any spinor field in
H. From now on, we shall consider all derivatives on ele-
ments of H as distributional derivatives (note that, by con-
struction, the first derivatives are in L,). This completes our
discussion of H.

We now split 8, the solution we are secking, into two
parts: a smooth spinor field 8§, which goes to constant at

infinity {in the sense that V_ 8§ = 0 outside a compact re-

. 7 .
gion), B, some spinor field. We now demand 8 to be in H,
thus making precise the requirement that 8 # approaches 8§
asymptotically. Now, Eq. (1.6} becomes

@AB@BCBCZ gABpB’ (2.2)
where
p'=— DB, (2.3)

From the definition of asymptotic flatness we see that
p” is square integrable (flo”||., < o). Thus the linear func-
tional defined by

flo* )zjs(_@‘ga”)*p,, av 2.4)

for all o”'eH, satisfies

Fle)<llo el

for all o’eH. So, f(-) is a bounded linear functional on H, and
therefore it is continuous. Then, by the Riesz theorem, there
exists #* in H such that

flot) = f(_@f‘,,a")*(@,,céﬂ av 2.5)
for all oeH. That is, by (2.4),
[@%0" 1D 1B —payav =0 (2.6)

for all g”'eH.
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Restricting now o to be smooth and of compact sup-
port, and integrating (2.6) by parts, we get

J-[(‘@CA"@ABUB)*B\C”UTB"@BLPL} dv =0, (2.7)

S
which is precisely the weak form of Eq. (2.2).

From standard theorems on elliptic equations,** we
now conclude that the weak solution of (2.2} is a C * solu-
tion. This completes the proof of existence.

There remains to prove uniqueness, that is, to show that
given 4, the spinor field B 4is determined uniquely on H. It
suffices to show that Eq. (1.6) has no nontrivial solutions in
H. But were a”cH a solution of (1.6) and a?aC & sequence
converging to a” in H, then, by integrating by parts the inte-
gral over S of (D ,, 2 ® -a®), we would obtain, in the
limit #— o0, ||||;; = 0 and so @’ = 0. This concludes the
proof of the theorem.

lil. CONCLUSION

The existence theorem proved in Sec. 11 fills the gap in
Witten’s argument, thus making rigorous his proof of the
nonnegativity of total mass.

It might be possibie to prove a similar theorem, using
the new methods for elliptical equations on manifolds Eu-
clidean at infinity developed by Choquet-Bruhat and Cristo-
doulou.? But it is very likely, even were this possible, that
there would be required much stronger conditions on the
asymptotic flatness of the initial data set than the ones we
have used. There would result, then, a weaker version of the
present existence theorem. But, as we shall see, the use of
weaker boundary conditions becomes of interest due to the
possibility of extending the definition of total mass to include
those systems which are only asymptotically flat in the weak
sense of our definition.

We have been using the second-order equation (1.6) in-
stead of Witten’s first order equation, 4“8 % = 0, because
the former is all that is needed to prove the nonnegativity of
mass. On the other hand, the latter arises naturally in super-
gravity, and so is in some sense more physical. However, all
our solutions of (1.6) also satisfy Witten’s equation.® Thus,
the two versions are equivalent.

To define the total energy momentum of an isolated
system one generally starts with a very small class of initial
data sets, for which it is easy to determine someexpressions
for E and P, and to give physical arguments (such as the
existence of conservation laws or of a canonical formalism)
to justify that they are the right expressions. The definition is
then corroborated in the weak field approximation and by
applying it to exact solutions. After that, the definition is
extended to all systems for which the expressions make sense
(e.g., give finite values for £ and P, ). Until Witten’s paper"’
all such expressions were either surface or volume integrals
with non-positive-definite integrands. Thus, because of pos-
sible cancellations in the integrals for E and P,, it could not
immediately be stated which are the weakest asymptotic
conditions a system must satisfy in order to have a well-
defined total energy-momentum. But now we have a volume
integral with positive definite integrand that, according to
Witten’s arguments, under suitable boundary conditions
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yields the same answer for E and P, as do the ADM expres-
sions? [via Egs. (1.7) and {1.8)). But by the present existence
theorem, the volume integral makes sense under far weaker
boundary conditions, namely those of Sec. II. This circum-
stance suggests that energy and momentum be defined in
terms of that volume integral {the one of Eq. (1.7)]. Thus,
with this definition we extend—in some sense maximally—
the class of initial data sets admitting a finite total energy and
linear momentum.?’

This generalization has the added advantage that the
integrand of the volume integral in (1.7) [where S  is a solu-
tion of (1.6}], acquires essentially the meaning of an energy-
momentum density. (Actually, it is the component along the
null direction S45 " of the local contribution to the total
energy momentum.) This density, the integrand on the right-
hand side of {1.7), contains not only contributions from the
matter fields, the second term, but also those from the gravi-
tational field, the first term. One expects physically that the
local energy momentum of matter and gravity would con-
tribute to the total energy momentum through a red shift
factor, which will depend on the configuration of the entire
system. In fact it is precisely the B € ’s that play the role of red
shift factors and the nonlocality is reflected in the 8 € ’s satis-
fying an elliptic equation.

Further one obtains, in the following way, a variational
principal for total mass. First introduce the normed vector
space V of spinor fields 8 of theform 84 = ¢ + B4, where
B¢ is any smooth spinor field that is asymptotically constant
in the sense of Sec. II and BC is any spinor field belonging to
H. The norm is chosen to be the square root of the right-hand
side of (1.7). Consider now the hyperplane in V obtained by
fixing 8 . That spinor field in this hyperplane which mini-
mizes the F norm exists and is precisely our solution of Eq.
(1.6) corresponding to this particular fixed value of 8§ Thus
the squared norm of this minimizing spinor field is just 1

(Ee, ¥ — \/5 P~ B B, . So we obtain a variational prin-
ciple, for which the spinor field 84, used in the expression for

FIG. 1. The Riemannian three-manifold (S,4,,,) with all nontrivial topology

inside the compact region K. To prove the generalized Sobolev lemma we
show that (S,A4,,) can be covered by sets like the one shaded above.
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Eand P,, is just the one which minimizes §{Ee,, " — /2P, ")
XB 5" Bon-

Thus the present definition of £ and P,,—as given in
terms of the volume integral of a density—is suggested by
the fact that it agrees with the ADM definition, when the
latter is applicable, and strictly generalizes it. Further, this
definition fits naturally into the framework of a variational
principle. Can a case be made that this version is the more
fundamental? Some insight might be gleaned from a study of
the linear case.

Note added in proof: After the completion of this work,
we learned of a simultaneous work of T. Parker and C.
Taubes substantially overlapping ours.
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APPENDIX: PROOF OF THE GENERALIZED SOBOLEV
LEMMA

It suffices to prove that for any C & functions £, the
inequality

LU)J|2¢1V»>¢fl_[|f16a’V]U3 (Al)

holds on (S,A,,). To see that this suffices, first note that we
can use the form of the H norm given by the first integral in
the right-hand side of identity (1.5), and that nothing is lost
by dropping the second term in this integral, since it is al-
ways nonnegative. Second, note that we can pass to scalar
functions, since the inequality

DA T AN =4ATD A + Ac D A |(A 1MA,,) 12
<"@a’1C’

holds for any A, where we have used the symmetry of 7,,,.

Finally, note that once (A1) is proved for C§ functions, the

lemma will then follow by Cauchy completion in H.

But it even suffices to prove that (A1) holds on every set
of some finite cover of S. Indeed, following Schoen and Yau,
let, for contradiction, (A1) fail for S. That is, let there exist a
sequence of C & functions, f;, such that both

(a) J’lef,.lde-»O and (b) fL/j("dV: 1.

Now consider any finite cover of S. Then, for every set of the
finite cover (a) holds, and for at least one of them the left side
of (b) must be bounded away from zero. But this contradicts
that (A1) holds for every set of some finite cover.

The proofis now completed by showing that there does
exist such a cover. Inequality (A1) is well known to hold on
flat R 3 (see, e.g., Ref. 23). It still holds on fat “4R *”, thatis on
the closure of one side of a plane. This can be shown by just
performing the x-integration in Ref. 23 between ( — «0,0)
instead of between ( — «, + o). And finally (A1} still holds
when the flat metric on 4R * is replaced by any curved metric
bounded by it (in the sense of definition of asymptotic flat-
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ness). This follows since some multiple of each side of (A1)
with the flat metric bounds the same side with the curved
metric.

All that remains is to prove that a finite number of sets
of this form covers S. Nothing is lost by considering K, the
compact set (in the definition of asymptotic flatness) contain-
ing all the nontrivial topology of .S, to have as its boundary a
sphere [with respect to the flat background metric of
{S — K)]. Now let p by any point of K, and q any point of dK
(the boundary of K ). By connectedness, there exists a
smooth, non-self-intersecting curve y in X, joining p to q, as
in Fig. 1. Consider the subset T, formed by taking the closure
of the union of (i) a tubular neighborhood of  and (ii) that
region lying in that side, not containing K, of the plane (with
respect to the flat background metric) tangent to K at q. But,
using the 17,, on § — K whose existence is guaranteed by the
definition of asymptotic flatness, this (7,4,,) is of the re-
quired form.?® Thus, inequality (A 1) holds on this (T4, ).
Since p is arbitrary, T sets cover K, and since q is arbitrary,
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S

AP, Ay d3e|.

Z(n

Here, 2(r}, with r€[0, « ), denotes a typical element of a one-parameter
family of nested surfaces (topologically S ?), and S {r} denotes the region
enclosed by the Z(r}. The surfaces and the parameters are to be chosen so
that d¥>dr d 3. Calling the left-hand side of th expression above g*(r),
in}egrating it over re[0,x], and using the Holder inequality, we get

f £2(r) dr<cg(x), where 2 = | (A "“A.) dV. But one can show there exists
0 S
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I. INTRODUCTION

Recently, a considerable amount of research in analyt-
ical neutron transport theory and radiative transfer has been
directed toward problems of the form

JZ ai Yz, u) + Yz, p)
’4

=£(22—)f_11//(z,y’)dy’, O<z< o, (L.1)
YO, u)=gly) O<pu<l, (1.2)
lim gz, ) = O, (1.3)

where c(z) is a continuous function of position.'~'* (See Ref.
12 for a review, and Refs. 14 and 15 for a similar transport
equation describing the flow of neutral particles through a

plasma.) Most of the research of Refs. 1-13 has treated

clz) = cpe ~ (1.4)
or

clz) = fo " altle—*ds, (1.5a)
where

fom |ta(t)|?dt < . (1.5b)

For these choices of ¢, elementary continuum (distribution-
al) solutions of Eqgs. (1.1) and (1.3) have been constructed
which are complete on the half-range 0 < u< 1; thus, a cer-
tain unique linear superposition of these solutions will solve
the full problem (1.1)—(1.3). For the case of a homogeneous
medium with scattering,

0<co<1, (1.6)

a discrete solution must be added to the set of continuum
solutions to obtain half-range completeness.' The discrete
solution exists for Eq. (1.6) but not for Egs. (1.4) or (1.5)
because ¢—0 sufficiently fast as z— oo for these latter func-
tions c; thus for large z the medium is essentially a pure
absorber for which there is no discrete solution.®

A nonhomogeneous medium which does not become a

clz) = cq,

*Work by the first author (E.W.L.) was performed under the auspices of the
U. 8. Department of Energy, and work by the second and third authors

{(G.C.P. and V.C.B.) was partly supported by the National Science Founda-
tion under grant CPE-77-24992.
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pure absorber as z— oo has been discussed by Pomraning and
Larsen?; it is defined by
o) = €S+ 2 ’
s+z
This function varies monotonically from its z = 0 value (c,)
toits z = oo value (¢,). Continuum ( — 1<v< 1), and [pro-
vided ¢, ¢,, and s satisfy a certain condition} one discrete
(v = v,) solution are constructed in Ref. 3. The continuum
solutions, however, contain the usual delta and principal-
value functions and their first derivatives, and thus are not
well suited for numerical computation.

In this article we reconsider the half-space character-
ized by Eq. (1.7) and derive more general and more useful
results than in Ref. 3. In Sec. II we show how to construct,
for all ¢, and c,, a set of continuum solutions { — 1<v<1)
which contain only the usual delta and principal-value dis-
tributions, and which are much more suitable for numerical
calculations than those derived in Ref. 3. In Sec. III we con-
struct, for all ¢, < ¢, and all s, a discrete solution which de-
cays as z— 0. In Sec. IV we construct a discrete solution
which decays as z— oo for all ¢; > ¢, and for an infinite denu-
merable number of choices of 5. Finally, in Sec. V, we use the
solutions constructed in Secs. I and I1I to obtain numerical
results for some albedo problems via the Fy method.>”'*!3
Unfortunately, we cannot at the present obtain analytic solu-
tions; we discuss this also in Sec. V.

0<cp, 6,1, O<s< oo, (1.7)

Il. CONTINUUM SOLUTIONS

The general ansatz for continuum solutions of Egs. (1.1)
and (1.3), with c(z) given by Eq. (1.7), is

ew) = A(ue= + [

0=4(y), —1<u<0. (2.1b)
Introducing Eq. (2.1) into Eq. (1.1) one can—after lengthy
manipulations described below—obtain A ( u) explicitly as a
function of B { ). Thus for “any” B ( u), the resulting pair of
functions (4, B), when introduced into Eq. (2.1), gives a solu-
tion of the transport equation. If in particular one chooses
B, (v) = lc,8(v — v'), then elementary solutions are obtained
which are parametrized by v'. [The factor ic, is a convenient
normalization.]

An easier way to derive these elementary solutions,
however, is to set B, (v) = l¢c,8(v' — ¥) at the outset. Doing

vB (v)
—le
v—p

vy, (2.1a)
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this, and then replacing v’ by v, Egs. (2.1) become

Yolepu)=A, (e

v 1 _
2 e z/v,

0<v<1, (2.2a)

2 v—pu
0=4,(p) —1<u<0.
We now rewrite Egs. {1.1) and (1.7) as
1
0=(s +z)(,u f;zﬁ + ¢) —fcis + czz)(%f z/rd,u’). (2.3)
-1

Z

(2.2b)

Introducing Eqgs. (2.2) into Eq. (2.3) and rearranging gives
0 = ¢,[s4,(v) + zA,(v)]e =¥

1
— [s¢, + z¢,] f A, (pe “*du, (2.4)
(]

where

1
e
2 Joaav—ypu
are the usual dispersion functions for the homogeneous
¢ = ¢; media.'®
To solve Eq. (2.4), we take

Av(:u’) = av(lu’) + bVS(V —,U),
O=a,(u), —1<u<0, v<uxl
and we use the integration by parts formula

zf a,{ e~ du
(¢]

— 0, (e~ — [ [%Mav(m]e-"ﬂdu. 2.7)

Introducing Egs. (2.6) and (2.7) into Eq. (2.4) now gives
0= [A,(v) — b, )ze "

i=1,2 (2.5)

(2.6a)
(2.6b)

+ [sA,v) —s b, —vzav(v)]e*/v
L c,
[d , 3! —z/
+f [——# av(#)——sav(,u)]e “du
Jo du ¢,
+ lim,uzav(,u)e‘”"]. (2.8)
L 1—0

This equation is satisfied if each term in brackets is zero. The
first two such terms and Eq. (2.5) give

b, = Ay(v), (2.9)

s ¢
o) v2< c,
The third term and Eq. (2.10) give

a,(p) = s(l _ ﬁ) __% e~ leweli/— 1w
/U
which automatically causes the fourth term in Eq. {2.8) to
vanish.
To summarize, we have constructed for all ¢, and ¢, the
foliowing family of elementary solutions of Egs. (1.1), {1.3),
and (1.7):

(2.10)

(2.11)

wv(z’ ,ll') = /IZ(V)(S(V —_ ﬂ) + 2/. ___1__. e z/v
2 v—u
+av(:u')eiz/ﬂy 0<V<1
(2.12)
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where
0, —1<u<0 and v<uxl,

a,(p) = S(l__c_.)_lsexp[_c_ns_(i _ L)] O<psy.
G/ U € \V H

(2.13)

These solutions consist of the standard continuum solutions
for the homogeneous ¢ = ¢, medium'® plus an extra term
which is not a distribution.

To conclude this section, we note that a procedure com-
pletely analogous to the above can be used to generate con-
tinuum solutions, which correspond to — 1<v<0, and
which grow rather than decay as z— o . These extra solu-
tions play no role in half-space problems, but they will enter
into the solutions of finite slab problems.

{1l. DISCRETE MODE FOR C, <C;

For v> 1 let us define 4,(v) by Egs. (2.5). As mentioned
earlier, A,( u) are the dispersion functions for the homogen-
eous ¢ = ¢; media. It is well known'® that on the interval
1 <v < o0, 4;(v) has exactly one zero, at the point v,, and for
¢, < ¢, we have 1<v,<v,< «. The proper ansatz for the dis-
crete solution of Eqs. (1.1),(1.3), and (1.7) can now be given as

Yz, p)=A(pe 7" + J%Me*””dv, (3.1a)
| vV—u
0=A(p), — l<u<O. (3.1b)

This ansatz differs from that for the continuum modes, Egs.
(2.1), in that the range of integration in the integral term is
now [1, v,], whereasin Egs. (2.1)itis [0, 1]. The integral term
in Eq. (3.1a) is thus not a principal value, and it has the
interpretation as a superposition of constant ¢ discrete
modes for 0 < ¢<c,. This “superposition” type of discrete
mode has not appeared in any prior eigenfunction analysis of
the transport equation.

Introducing Egs. (3.1) into the transport equation (2.3)
and rearranging, we obtain

0= f [sA,(¥) + 24,(v)]1 B (Ve = **dv

1
— (s¢, + zcz)(% f AWve~ z/Vdv). (3.2)
-1
Integrations by parts give
f 2B (e~ dv
1

= v A,(WB (vle |7 — th [ -;v— v2A,(v)B (V)]e ~ vy

(3.3)

and
1
f zA (vie =7 Vdv
0
1
=24 (v)e~ 7|} — f [—‘-i— V24 (v)]e —vdy,  (3.4)
o Ldv
and thus Eq. (3.2) can be written
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0= JW2 -s/ll(v)B (v)— d;dv v?A,(v)B (V)]e ~#dy
_L f [c,sA (V) — ¢, i Vv’4 (v)]e —#dy

+ 11m VZAZ(V)B(V)] -

L v—y,

— llm V2 A,(v)B (v) +

L v—1

n 72[31:2 ey (v)e_”"]. (3.5)

2A(1)] —:

Each of the five bracketed terms in Eq. (3.5) must van-
ish. Setting the first and second to zero gives

V’A,(v)B (v) = ye?™, (3.6a)
_ " Adlr)
fv)= § tzzlz(t)dt' (3.6b)
and
¢S 1
A(p)= A(l)—ex [Cz (1—;)], (3.7)

where ¥ and 4 (1) are constants.

On the interval 1 <v < v,, 4,(v) is negative, while 4,(v)
is negative for 1 <v < v, and positive for v, <v <v,, and
therefore 8 (v)<0. It is easily shown that 6 is continuous and
bounded except for v = v,, where we have

6(v)=alnv,—v)+ 0(1), v=v, (3.8a)
Ay(va)
=217 .. (3.8b)
ngi ()
Hence,
&P = O(1)(v, —v)™, vew, (3.9)

and so by Eq. (3.6a), the third bracketed term in Eq. (3.5)
automatically vanishes. It can easily be shown that the re-
sults in this paragraph do not hold if ¢, > ¢,; hence, for this
analysis, the assumption ¢, < c, is essential.

Setting the fourth bracketed term in Eq. (3.5) to zero
gives, with Eq. (3.6a),

A= —Zyem,
C2

(3.10)

and hence

Alp) = —c%yexp[se(l) +sz—;(l _ #l)] (3.11)

which automatically causes the fifth bracketed term in Eq.
(3.5) to vanish.

By inspection, 4 ( i) is a continuous, bounded function
of i1 for O<u< 1, if we define 4 (0) = 0. By Egs. (3.6a) and (3.9)
and the properties of A,(v), the same is true for B (v) on the
interval 1<v<v,, except possibly at the point v,, where

B)=0(1)(v, — v)=~}, (3.12)

For 0 <s<a™"', B(v)has asingularity at v = v,, but this sin-
gularity is integrable. For @ ' <5< w0, B (v) has no singular-
ity at v = v,, and in fact B (v,) = 0. The “turnover” value of
s, s = a~ ', is the only value for which B (v,) is finite and
nonzero.

Thus for all 0<s < o, B (v) is integrable, and we can

ve=v,.
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choose ¥ so that B (v) is a weight function:

1= f " B (vidv; (3.13)
1
the proper value of ¥ is
V2 eselv] ] —1
. 3.14
[ J. V2 A,(v) ( )

Our results are summarized as follows.

The discrete solution is given by Eqgs. (3.1), with 4 (u)
defined by Eq. (3.11), B (v}and 6 (v) by Eqs. (3.6), and ¥ by Eq.
(3.14). The function 4 { v) is continuous and bounded, and
B (v) is continuous and bounded for s <a ™' < w0, where a is
defined by Eq. (3.8b). However, for0<s<a ™', B(v) has an
integrable singularity at v = v,.

From Eq. (1.7), it is apparent that as s tends to 0 or «,
¢(z) tends to the constants ¢, or c,, respectively. For these
cases, we have verified analytically that B (v) converges to
8 (v — vy)ord (v — v,), respectively, and that 4 { i) converges
to zero. Thus, the discrete mode of Eq. (3.1) converges, with-
in a normalization factor, to the usual discrete mode for the
homogeneous ¢ = ¢, or ¢ = ¢, medium.

We have computed B (v) numerically for ¢, = 0.9,
¢, = 0.99, and various values of s. (For these values of ¢, and
¢, vy = 1.903 20, v, = 5.796 73, and the “turnover” value of
siss = 1.298 63.) The results, plotted in Fig. 1, numerically
and visually substantiate the above comments concerning
the behavior of B (v) as s—0 or s—o0.

To conclude this section, we remark that we have not
been able to directly extend the above analysis to either the
casec, > ¢, or to the construction of a discrete solution grow-
ing as z— . For ¢, > ¢, a discrete solution decaying as z—
can, however, be constructed, in certain cases, but by a dif-
ferent analysis which we present in the next section.

IV. DISCRETE MODE FOR C, > C,

In this section we shall construct a discrete solution of
Egs. (1.1),(1.3), and (1.7), for constants c,, ¢,, and s satisfying

s(c.—cz)——(czvz)Z[ln( :)+( 27, )] @.1)

where m is any positive integer and, as in Sec. I11, v, is the
positive root of A,(v,) = 0. It is shown below that the above

—--—1.29863

LEGEND: S e 0.
|

FIG. 1. B(v) versus v.
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expression in brackets is positive; hence Eq. (4.1) implies

¢, >c¢,. Thus if ¢, and ¢, are chosen, with ¢, > c,, then Eq.

(4.1) defines an infinite denumerable set of admissible values

of s. We do not now know how to treat other values of s.
An ansatz which leads to the solution, and which is

analogous to Egs. (2.1) and (3.1), is

e = | EBT(:}e

Introducing Eq. (4.2} into Eq. (2.3) and integrating by parts,
as in the previous sections, we obtain

— vy, (4.2)

4 VAAL,(V)B (V) + sA,(v)B (v) =0, (4.3a)
dv

B(1)=B(w)=0. (4.3b)

It is easy to show that Egs. (4.3) have no continuous solu-
tions. However, if we formally introduce the distributional
form into Eq. (4.3a),
Bv)= 3 b, SN — v,) (4.4)
n=20
(where 8 is the nth derivative of the delta function and b,
are constants to be determined), then Eq. (4.3b) is satisfied
and Eq. {4.3a) reduces to a homogeneous system of m + 1
equations for the m + 1 unknowns b,,. This system has a
unique (up to a normalization) solution provided its determi-
nant vanishes, and this condition is given exactly by Eq. (4.1).
The ansatz (4.2) and the form (4.4) for B imply that

v p)=e " S g (e (4.5)

n=0
Since this equivalent form for ¢ is algebraically much easier
to manipulate, we shall use it as our basic ansatz.
Thus, we introduce Eq. (4.5) into Eq. (2.3) and rearrange
to get

0=+l S n+ Vu, . (u

n=20

= 5 (Lt e [y

+se—e) § (5 f_ Wl
(4.6)

The following equation is an identity, which can be verified
by comparing similar powers of z:

SILS s
- (L] )
e g 5

([ poturis) |

(4.7)
Replacing the last term in Eq. (4.6) by Eq. (4.7) gives
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o=+a $ [(1-£)s, —%f_lll/}n(#')dﬂ’]f

n=0 V2

+ 78 i+ b = fea =

m-—n {1 1
S A3 [ bewian)]o)
= 2J).
m 71 1
tsle—e) 3 (- Sy(jf '/’j(#')du’)- (4.8)
Jj=0 —1
By setting the last term, and the coefficient of each power of z

in the braces equal to zero, we obtain the following set of
equations:

bl = o) [ (b =0, 49
Ul 1) — ol 1) L b ')t
- —(n+ l)cimsz(m Vo1 (1)

(e Z“) PEEY f P

o<n<m—1, (4.10)
m ol
0= Z (-—s)’f lgzrj(,u')d,u’. (4.11)
j=o -
Here we have defined
o =22 L (4.12)
2 v—p
and we have
1
| e =1 - = 1. (4.13)

The solution of Eq. (4.9), up to a multiplicative con-
stant, is

V(1) = o ). (4.14)
Equation (4.10) with n = m — 1 now becomes
bl =) [ b (e
= —m L gt — s w1 - 2). (4.15)
%3 (&)

Integrating over u, the left side vanishes, and we obtain the
condition

Sle1 — ¢2) = 2m f_lmb%(#)dﬂ

1
=2mciv; J ( £ )zd,u.
o \v; —p?

The right side of this equation is positive, and when the inte-
grand is evaluated, the equation reduces to Eq. (4.1), which
we have a priori assumed to hold.

Let us now denote the right side of Eq. (4.15) as
N, _ 1 ). Then the general solution of Eq. (4.15) is

(4.16)

¢m—1(lu’)=am—l¢2(”)+77m-l(,u)! (4173)

and
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f_lt/f,,._,(mdp=a,,,,1. (4.17b)

Todeterminea,, _ |, we introduce Eqgs. (4.14} and (4.17) into
the right side of Eq. (4.10) with » = m — 2 and (again) inte-
grate over . The left side (again) vanishes, and we obtain a
condition which explicitly determines @, _,. Witha,, _,
thus determined, we denote the right side of the equation for
¥,._, as 7, _,, and we obtain the general solution

Y2 (1) =80 282 ) + N _2 (1), (4.182)

1

lpm—Z(:u)dl“ =a, »-

-1
The remaining equations (4.10} can be solved explicitly
and recursively in this manner, yielding the forms

¥, (u)=a,é,(u) +n,(u), 0<n<m,

1
f Yolpldu =a,, a, =1,
—1

and where every constant a,, is determined except for the last
one, a,. However, all of Egs. (4.9) and (4.10) are satisfied, and
the one remaining equation to be solved, Eq. (4.11), reduces
to

(4.18b)

(4.19a)

7, =0, (4.19b)

O=a,+ Y (— sYa;. (4.20)
i=1

This establishes the value of a,, and thus the solution is now

fully and uniquely determined.

To summarize, if m is a positive integer and ¢,, ¢,, 5, and
m satisfy Eq. (4.1), then a solution of the transport equation
can be constructed having the form of Egs. (4.5) and (4.19).
(The special case m = 1 was treated earlier in Ref. 3.)

The essential ingredients in the above analysis are the
constraint (4.1) and the ansatz (4.5). To satisfy Eq. (1.3) we
have assumed v, > 0, but if one desires discrete solutions
which grow as z— 0, then one can take v, to be the negative
(rather than the positive) root of the equation A,(v,) = 0. The
right side of Eq. (4.1) is an odd function of v,, and thus if v,
changes sign from plus to minus, then ¢, — ¢, must also
change sign from plus to minus. The above analysis now
follows directly. To summarize, we obtain for ¢, < c, and the
infinite discrete set of values of s defined by Eq. (4.1), a dis-
crete solution which grows as z— 0.

V. NUMERICAL RESULTS

We consider the solution of the albedo problem for Egs.
(1.1)(1.3), where ¢(z) is given by Eq. (1.7) with ¢, < ¢,. If the
eigenfunctions described in Secs. II and III are half-range
complete, we may write the solution of this transport prob-
lem as

Ve, p)=A4. 9. pn) + L AW, (2, p)dv, (5-1)

where 1, (z, ) are the continuum eigenfunctions obtained in
Sec. I, ¥ (2, u) is the discrete eigenfunction derived in Sec.
III, and 4, and A (v) are expansion coefficients. A complete
and conceptually straightforward solution method for this
problem would be to construct a half-range completeness
proof for the eigenfunctions, thus justifying the writing of
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Eq. (5.1), coupled with an analytic solution technique for the
singular integral equation which yields 4 , and 4 (v). At this
time, however, we have been unable to find a completeness
proof and solution technique.

Instead, we derive from Eq. (5.1) a singular integral
equation for the outgoing angular flux (0, — u), 4 > 0, and
use the F, method described by Siewert ez al.>"-'*!° to ob-
tain a solution for the outgoing flux. This procedure starts
with Eq. (5.1) and hence presumes completeness of the eigen-
functions. If the final numerical results are correct (we com-
pare our results with an independent numerical solution of
the transport equation), we then have established numerical
evidence for half-range completeness of the eigenfunctions.
To obtain the above-mentioned integral equation, we need
the relationship

f_ 1 w2, phslz, — pdu =0, (5.2)

where ¢, and ¢, are any two solutions of the transport equa-
tion (1.1) which vanish at z = + . Equation (5.2) is easily
derived by writing Eq. (1.1) for ¢,(z, u) as well as for

¥,(z, — u), cross multiplying, integrating over u, and sub-
stracting the two results. Now, we multiply Eq. (5.1) succes-
sively by uy, (z, — p) and uo, (2, — p), integrate over u, and
evaluate the results at z = 0. Since Eq. (5.2) implies that the
right-hand side of Eq. (5.1) vanishes upon integration, we
obtain the two equations

f, 1 — IO, s =0, (5.3)

1
f 18, — 10, pldt =0, 0<wv<l, (5.4)
—1
where we have defined

¢ (u)=9,0,u) &.(u)=1v,0pn). (3.3)
Using the boundary condition, Eq. (1.2), in Egs. (5.3) and
(5.4) for (0, u) for positive values of i, we obtain

Ll (W0, — i = 5., (5.6

Jol 1, (W10, — s = S(v), 0<v<1, (5.7
with the “source” terms given by

s.= | i1 — kg (5.3)

S = j b, — plg (wids, O<V<L. (5.9

For any incident distribution g ( ), these sources may be

evaluated and Eq. (5.7) then represents a singular integral

equation to be solved, subject to the constraint given by Eq.

(5.6), for the outgoing angular distribution ¥(0, — u), > 0.
The F solution method represents ¢(0, — u) as

N
YO, —p)= 3 b,u""", p>0,

n=1

where the expansion coefficients b, are to be determined. If
we define

(5.10)

1

D, = f ., ), (5.11)
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TABLE 1. The albedo for an isotropic incident flux with ¢, = 0.9 and ¢, = 0.99.

Nxs 0.1 0.3 1.0 3.0 10.0 20.0

2 0.716 90 0.65197 0.571 56 0.51935 0.492 09 0.485 21
3 0.716 87 0.651 92 0.571 62 0.519 37 0.492 13 0.485 30
4 0.716 89 0.651 92 0.571 64 0.519 38 0.492 14 0.485 30
5 0.716 90 0.651 92 0.571 64 0.519 38 0.492 14 0.485 30
ANISN 0.718 0.653 0.572 0.520 0.493 0.486

= [ woludu ocv<l, (5.12
the use of Eq. (5.10) in Eqgs. (5.6) and (5.7} gives

S Db, =S5, (5.13)

f" C,vb, =S(v), 0<v<l1. (5.14)

n=1
To obtain the required N equations to determine the b,,, the
F,, philosophy is to evaluate Eq. (5.14) at ¥ — 1 points, say
v,., m=12,.,N — 1. Equation (5.13) provides the N th
equation. We used the simple choice of equally spaced collo-
cation points, that is,

v =m0 N1 (5.15)
2N—-2
Thus we obtain the N X N matrix problem
N
Yy C.vnlb, =S(v,), m=12,.N, (5.16)
n=1
where for compactness of notation we have written
C,lvy)=D,, Slvy}=S,. (5.17)

Once the b, are obtained by applying any standard linear
equation solver to Eq. (5.16), the albedo 4, defined as the
ratio of outgoing to incoming currents, is given by

1 1 N bn
A=Ly¢(o.—mdu/fo pe (= 3 o,

n=1

(5.18)

where in writing the last equality, we have assumed that the
incoming current is normalized to unity.

Introducing the eigenfunctions explicitly into Egs. (5.8)
and (5.9), we find that the sources can be written

vy 1
So= [ v | Loguduan (5.19)
i o v+ u
1
S(V)=fﬁJ £ g(udu, 0<¥<L. (5.20)
2 Jov+pu

For the special case of isotropic incidence, g (4) = 2, Eqgs.
(5.19) and (5.20) reduce to

S, =2f’ vB(v)[l -—vln(l _:v)]dv, (5.21)
S(v)=c2v[1 —vln(l t”)] o<v<l. (5.22)

Similarly, the matrix elements are given explicitly as

D = — iE (cls/c2)83[9“)+(01/€1)]
n n
€2

" f "VyB(WK,(Wdv, n=12..N (5.23)
1
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C.v)= s(l - -C—‘)V' ~E (c,5/cv)e"
c

2
+ VA, ) + CZTVK,, V), 0<v<l, n=12,..N.
(5.24)

Here E, (z) is the usual nth order exponential integral,'® and
K, (v) is defined as

K, W) = f £ gy, (5.25)
o V— L
which can be computed recursively from
K, =vK, (v)—1/n, (5.26)
with
Kov)=1n (1 i ) o<v<l. (5.27)

As an application of the foregoing numerical method,
we have obtained explicit results for g ( ¢) = 2 (isotropic inci-
dence) and various values of ¢, ¢,, and s. Typical results from
our computations are shown in Table I, which corresponds
toc, = 0.9and ¢, = 0.99. For these parameters, the turnover
value of s is 1.298 63 and Table I gives results for s both
smaller and larger than this turnover value. These results
show that for this problem the F, solution method con-
verges extremely well as a function of N, and apparently
converges to the correct answer as generated independently
by the ANISN computer code.!” (ANISN generates a direct
numerical solution of the transport equation by the stan-
dard, well-tested method of discrete ordinates.)

The excellent agreement between F,, and ANISN cal-
culations gives numerical evidence that the eigenfunctions
constructed above are indeed complete on the half-range. In
addition, our results show that the F,, method is a very effec-
tive tool for obtaining numerical albedo results for the class
of problems considered in this article.
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Unrenormalized Schwinger-Dyson equations and dynamical mass
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In dynamical mass generation of fermion fields by fermion-spin-1-boson interactions,
anomalous magnetic moment-like terms in three-point functions play an essential role, so that
the Schwinger-Dyson equations do not admit a trivial solution, i.e., a solution without
dynamically generated mass. Applicability of Altman’s and Lika’s versions of nonlinear
operator theory to unrenormalized Schwinger—Dyson equations is discussed and algorithms for

construction of approximate solutions are proposed.

PACS numbers: 11.10.Lm

1. INTRODUCTION

In early 1960’s, interest in the problem of dynamically
generated masses (DGM'’s) was revived in various con-
texts'' after a dormancy due to the success of the renormal-
ization theory. One aspect of the problem is concerned with
DGM due to a breakdown of chiral, gauge, conformal and
other invariances, and another is concerned with the exis-
tence and uniqueness of solution of nonlinear and/or singu-
lar integral equations. Here we discuss mainly the latter as-
pect of the problem and try to apply the modern nonlinear
operator theory'®?' to the equations arising in the problem
of the dynamical mass generation (DMG).

Though we do not discuss much about the group theor-
etic aspect of DMG in this note, Poincaré group and spinor
structure cannot be ignored. Asisseenin Eq. (11), ¥ matrices
play essential roles in the DMG of spin 1/2 fields. If the
vertex part contains a magnetic moment-like term, the equa-
tion for the mass term of the self energy is coupled to the
equation of the y-p part, and does not have a trivial solution,
even if the self energy of the vector field is ignored. In this
case one cannot use the bare vertex even for the y,, part of the
three-point function, so one must begin with form factors
with nice asymptotic behaviors, because we cannot subtract
divergent terms without throwing away the dynamically-
generated mass we want.

In section 2, we formulate the physical equations. As we
are mainly concerned with the operator theoretical aspect,
we take the U, (1) and U, (1) models as the simplest examples
in order to see the essential features of nonlinear integral
equations in the theory of DMG. In Sec. 3 we interpret the
equations proposed in Sec. 2 in terms of operator theory so
that the operator theory will be applicable. In Sec. 4 we pro-
pose Lipschitz approximation to the nonlinear operator aris-
ing in the unrenormalized Schwinger-Dyson equation pro-
posed in Sec. 2. Existence of a solution to systems with
equations with constraint is also discussed. Section 4 con-
tains concluding remarks. Relevant mathematical defini-
tions and theorems are presented in the Appendix.

2. SCHWINGER-DYSON EQUATIONS TO BE
CONSIDERED

In order to see the essential features of integral equa-
tions for the self-energy parts relevant to the problem of
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DMG, we consider the U, (1) and U, (1) models as the sim-
plest examples. We begin with the following Lagrangian:

L =L+ L+ L (1)
L, =diyay, 2)
L, =49,4, —3,4,)3,4, —3,4,)

+ gauge fixing term, 3)
L = — BOVsY YA, 4)

As we are going to deal with unrenormalized Schwinger—
Dyson equations, counterterms are not included in the above
Lagrangian, where 7/5 ysor 1.

Then the equations for the self-energy part reads

z<m=s<2;p)=:g%5nfd‘*k{y-ku(k)r'
XFv(k’p;_p_k)D;lv(z’pL (5)

where

bup.
Dyv(zip) = :(gyv - ;2 )

x{pt + L miza) - T rlZa)|
+ p,,pv { o+ PP g z,p)] (6)

vyv(z,p)=:~gfd“kTr lrsn{r-k+2(k)}—‘

XF,(k,—k—pp){vip+k)+Z(p+k)}~']. (7)

The only integral that may divergeis 7,,, (Z,0), but it does not
affect the convergence of the integral (5). As for the domain
D (Z) one can choose a suitable bounded set in the direct sum
of Banach spaces 8, D2, and 8,23} with norms defined
by (23) in Sec. 3. 5, may have “singularities” ~ (k2 — x)°,
6> 0. For convenience let us set the gauge parameter £ = 0.
Then the longitudinal part of D,,, { p) does not have a pole
unless 7, (Z,p) = 0 for some p with p?5£0. If one ignores the
form factor F and the momentum dependence of 7, one gets
the following equation for the mass part of the self-energy
function:
2(q2)=/1fd4k > (k)

(k7 + 2 (k*P1(k—q) —#2(2)](;)
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where 1% is a functional of 3. geneous” equation. But the situation is not so simple if the

Obviously, this equation has the trivial solution form factors are taken into account. Suppose the vertex part
2 (p)=0. Since 1964, the great majority of the papers*~® on {amputated three-point function) F, contains an “anoma-
DMG in models with boson-fermion interactions have been lous magnetic moment-like term” Psy, v, (P + ), />
concerned with finding nontrivial solutions of this ‘““homo-

F(p.g;—p — 9) =751, A P409) + ¥s¥i Vol P+ 9), Sl D207 09) + - (9)
Then even in the approximation with the “Feynman gauge” free propagator
D, (p)=1ig,,(p* —p® — €)™ (10)

the equation for the y.p part and the scalar part of the self-energy part remain coupled

‘&mﬂ=gfd%{—lrhwmﬁﬂl+L%Wﬂ@%+%u—%Mw@ﬂ

X2k ) fo@) + =} {(p — kP —p} THEH 1+ Zy(k %)) — Zo(k 27}, (11a)
2y (p?) = gfd“k {(—ykyp — 2kp + 3k 7)1 + Z,(k %) Q)
+ 2k ) AQ) + - {p — kP — ) THE (1 + 3k 7)) — Sk 2P} (11b)

where 3 (p) = yp2,(0%) + 2, pI). £,(Q) = f,(k 2p>k-p),and 7 = — 1if ys = ¥sand 7 = 1if y5 = 1. It can be easily seen that
the system (11) does not have a solution with 2,=0 unless the form factors satisfy some complicated constraints involving X',.
In other words, the anomalous magnetic momentum-like term in the vertex part induces a DMG. Moreover, it is easily seen
that 3,(0)5£0 unless the form factors satisfy further constraints.

Some comments are in order. Though the system (11) does not admit the trivial solution 3,=0, it is still of Urysohn type.
However, if the vacuum polarization # is taken into account [see Eq. (5)], the mapping ='is no longer Urysohn but noncom-
pact, so that many theories developed for compact mapping are not applicable. If one sets § #0, the longitudinal partof D, ( p)
has a pole at a different value of p* from that of the transversal part. This may cause additional difficulties in the handling of the
equations.

An interesting model of the vertex part with a nice asymptotic behavior is

lp*1*lg* || (p + 9
EP?] +1g°] + |(p + 7| + m?)2e 2

- p*| 1’1 |(p + g1 ‘g

+ c27/57/[,u7/v](p + q)v { LD2| + lq2| + |(p + q)2| + m2}2a'+5'+ 1,2 ° a,a )B >Oyﬁ> 1, (12)
where m is a parameter with the dimension of mass. This form factor reproduces self-consistently X ( p) ~y-p, p— o0, up to at
most a logarithmic factor. If one begins with a more general vertex function

m™|p*|*1g”|°|(p + q)*|°
{P?| + 1¢°| + |(p + @' + m?}2e+ B 7
m? P11\ p + 4P 1P
(P + 102 + |(p + gP| + m?)2e+P v et?
and indulges in naive power counting, one gets X ( p) ~ y-p( p>/m?) ~ 7. But let us curtail further discussion of this topic and
return to the main issue.
Another question to be considered is whether there are any different features in DMG if the Lagrangian is not P-

invariant. As an example of systems with parity-violating interactions, let us consider the system with the following
Lagrangian:

E(p.g;,—p—q)=c 757,

FL(pg, —p —q)=ci¥sy,

+ Ci YSV[MYVI(P + q)v a’a"ﬂ ',7’> 0, B> 1, (13)

L = i!ZY'a'// - %Fva#v - %Gva#v - l.f'?’y“'pA B— ig@(l +By§)7/u¢B;4 ’ (14)
F,=d,4,-40,4,, G,=4d,B, —-43,8,. (15)
Then we get the following Schwinger-Dyson equations:
2(p)=0(2,Ip)
1
=f|d*%y, ————TI4kp;,—p—k)D4 k
7 4% 0 g T =P~ KDL+
1
+f|d*ky, ————TBkp,—p—k)D45 k
7 [ d% s P —p = KID 2 p 4 )

+gfd%ﬂ+ﬂmn I2kp;—p—k)\DE,(p+k)

+gfd‘k(l+ﬂrs)7ﬂ

1
vk —Z (k)

1
FA k, ; k)DBA k X
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(kg — Kok, —mi, (k) D g, (k) — mii(k)D 2k ) = igs,, (17a)
(kg —k.k, — 3, (k)}D2Bk)— mi2(k)D 2 (k) =0, (17b)
{kzgx,‘ _klkp _”B k)}D (k)— Aﬁ(k)D,‘;f(k)=ig;.w (17¢)
(kg —kik, — (k)}DB‘(k) —mialk)D 4, (k) =0, (17d)
1 1
k)=f|d%T TAlg — 1k, —q —tk:k , 18
e R R (e e L SR L el e
1 1
mi8k) =f| d%qT rBg—ik, —q — bk
el f qrhvw—%pzm—%)(qﬁ T R — T
s 1 1
=g | d%Trl1 I'i(g— ik, —q — k;k
gJ ? %(+m““rw—yw—zm—%)”” o= T S a )
1 1
m.k)=g | d*¢Tr|(1 + I'8g— 1k, —q—lkk
(k) gf q r[( Bysiva 7,(q_%k)_z(qaik)[ nlg— Yk, —q—}4 )]7"(4+£k)+2(¢1+£k)
where I and I"* are the vertex part. Now we assume that 2, "4, and I" # have the following forms:
Z(p) = ypoi p?) + 0o P°) + ¥sypos( PP) + ¥s0u P7) , (19)
T pa—p—9) =V (P09 + ViV [A PG P4) (20)
T'i(pg—P—q) =7 (P00 + V.V 1B P2G7P9) + VsV hol D07 P9) + VsV, Y hal D247 P 9), (21)

with ¢’s, f’s, and /# ’s with appropriate asymptotic behaviors.
Of course, (20) and (21) are not the most general forms of I"’s
but we take them as reasonable models of the vertex parts. If
one begins with an arbitrary set of ¢’s, /s, and 4 ’s, one finds
that £2 [3,I",p] generates the structure ~¥5 which violates
the CP-invariance. For such a structure to be absent in 3 the
input model vertex functions must satisfy certain con-
straints. In other words one cannot choose all the model
functions f’s and % ’s independently. For systems with La-
grangian containing boson-boson interaction together with
fermion—boson interaction, for example a system with

L = — ig¥rsep —Ap*,
or non-abelian gauge theory, one cannot express boson self
energies and boson propagators in terms of fermion propaga-

tors, so that one has to deal with a set of unknown functions
(2,2 2,77'} .

3. OPERATOR THEORETIC CONSIDERATIONS OF THE
RELEVANT EQUATIONS

In this section we reformulate the problem of the unren-
ormalized Schwinger-Dyson equations and DMG in the
language of modern, nonlinear operator theory (NLOT).

Let us write a nonlinear integral equation abstractly

o—7Tlo}=:@[o]=0. (22)

As we are thinking of Eq. (5) and Eq. (11), we do not assume
that the map Y is Fréchet differentiable, because these equa-
tions contain the unknown function in the denominators.
Though the Euclidian versions of these maps are Fréchet
differentiable, we do not discuss the Euclidean version be-
cause one cannot Wick-rotate an approximate or model ver-
tex part and approximate solutions. So we must apply theor-
ies of nonlinear maps without Fréchet differentiability
developed by Altman'’ and Lika.'®
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As D, can be expressed in terms of X, , Eq. (5) can be
rewritten as a system of equations for two unknown func-
tions 2, and 3. So, Eq. (5) as well as Eq. (11) can be dealt
with in the direct sum of the Banach space of candidates for
3, and those for 3 5( p?) = «(|p?| + 1)~ 'ZH(p?), 7>0. As
Z,( p*) may increase ~ |p?|'/? as |p?| >0, we take 3 ; as a
normable function instead, and define the norms as follows:

121 =12l + 1251, (23a)
121 = sup|Z,( p?), (23b)
|2 51} = sup|Z 3(p)] + supllp®|' 22 5( p7)|. (23c)

Because of the presence of 2 in the denominators of Eq. (5)
and Eq. {11), the domains of the maps under consideration
are bounded, in other words, not vector spaces, so that global
theories are not applicable. On the other hand, in terms of
the propagator

Gip)=[rp—Z(p]" (24)

the Schwinger-Dyson equation is “polynomially” nonlin-
ear, but the unknown function G ( p) has a pole at an un-
known place so that we cannot construct a Banach space
that contains G ( p).

As for the vertex part F( p,q;p — ¢), we assume the fol-
lowing asymptotic bound so that the integrals in Eqgs. (5) and
(7) exist for finite values of p* if D, (p) ~ 1/p’:

oo

G(p) ~ ro/p’

VsV il Pa%p)

+ VsV Vool P — 9) S P22 ), (25)
P*1°l¢%1°l(p + 9)*)°

(1P? + |4 + |(p + gP*| + m2}2a+P
(26a)

F(pg—p—q) =

Vi Pa%p-9)| <c
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12*1¥1%1% (2 + 9)** ,
{10° + g% + [(p + @] + m?}>= +P +3
(26b)

Il P2.4%p-9)| <,

with

a,a’, B'>0, B>1, (27)
where m is a constant with the dimension of mass.

The asymptotic bounds (26)—(27) are a sort of asymptot-
ic freedom, and seem reasonable especially in non-abelian
gauge theories, though theories of asymptotic freedom based
on “renormalization group” equations'®~*! do not say any-
thing about asymptotic behaviors of many-point functions
with some moments squared and some products of momenta
remaining finite and others tending to .

4. ALGORITHMS FOR CONSTRUCTION OF
APPROXIMATE SOLUTIONS

In this section, we try to apply the algorithms for con-
struction of approximate solutions to nonlinear operator

equations, developed by Altman'’ and Lika'® for the cases
where the mappings are not Fréchet differentiable.

Now let us consider Eq. (5). One of the simplest zeroth
approximation one can think of is of the form

2%p)=Zyp + M(1 + b(sgnp*)|p*|'"), (28)

where b:{ — 1, + 1}—C. Then fix the parameters Z and M
50 as to satisfy the condition

EX°p)~Zyp+ M as p—O0. (29)

Or one may begin with a more complicated zeroth approxi-
mation X ¥ involving many parameters and fix those param-
eters so that 3 %( p) and = (3 *,p) have the same asymptotic
behaviors for p>—0 or p>—0 and p>—« or they coincide at
several fixed values of p.

In order to apply theorems 1-4 we take a Lipschitz ap-

proximation @ to = defined as follows:

1
0Zaas00m) =8 [ 47,6 Zawmnk)
XFv(kap; —p— k )D~uv(G~ (2 )ral’a27w1:w2!p + k )9 (30)
5 yoll + 24 p%) — Zo(P°) 2
G(Za,w;p) =: {1—6,(a,—|p*—P|)
TR S - S }
7'17(1+21(p))_22([’) Rk ew,(a1—|P2—P|)’ (31)

P14+ E(Z°p) — EyZ°p?)

. k. k, L
D,uv(G (2 )’al’a2!w]!w2;k ) = :(g/zv - £ )[k 2 + %ﬂ/li (G (Z’al’a)l)’aZ’wZ;k )

k2

—1 kzli" 71(G (2,2 ,0,),a505k )] B 1{ 1-6, (a,—|k*—K|)}
+ (g - oYt s ipimon) 1 B i) e - kD 2
T2 (G (2,01, ), @005k ) = 73, (Z k)6, (0 — |k 2 — K |) + Th(G (Z.a,0),k ){1 — 6, (a; — |k> — K |}}, (33)
Th(G(Z,a,0,).k) =g f d*q Tr [ys7, G (22,0, — ik )F.(g — Yk, — g — bk:k )G (2,0, + 1k )] (34)
b= [ guwiax 39)
¢7,,,(x) = [S;(p { — (1)2(0)2 — x2)_'}, X|x<|iw (36)

where P and K are real roots of the equations
71+ 2,2 — 52 %) =0,

(37)

k. k
AE) =€+ Zok) |k, —g—,‘(z—‘m(zo,k)uz:g =0 (38)

with respect to 7 and £, respectively. K in Eq. (32), etc., should not be confused with K in Eq. (A1), etc. If one or both of these
equations have two or more roots, the definition of the Lipschitz approximation (30)~(34) must be modified accordingly. Or
one may try different input form factors and/or different zeroth approximations.

Now, the Fréchet derivative of the Lipschitz approximation @ is

roll +34(p°) — S P2

O'(2,a,,ayw,03Z "p)= —28 f d*k 75,

[P(1+ 2P — Zo(p?)]?

X[P(1+Z(pN2 1(P7) = 2o P72 5(p)]1 = 6,, (@ — |p* — P )}
XF, (kp; —p—k lD,uv(G(E Q1,020 1,02p + Kk ) + - (39)
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so that integration of terms with double factors in denominators are not carried out over neighborhoods of the poles. Now the
problem is to check whether various conditions in the theorems presented in the Appendix are satisfied for various choices of
parameters and input (model) form factors. If those conditions are satisfied for a certain choice of input form factors and
parameters, one can proceed to construct an approximate solution.

For form factors with asymptotic behaviors, (26) and (27), and 3 ’s in the Banach space with norm (23), the integrals on the
right-hand sides of (5), (30), and (39) are convergent so that Lipschitz conditions are satisfied, and for small 3 " we get the

following estimates:

2] ’(Z(”;a],az,wl,wz) -0'2 (2);al,a2,w,,w2)||<L ”2“) -2 (2)“’] (40a)
L = 0(¢g),¢ = Max (c,,¢,),

“5(2“)) - @(2“);511’02:“)1,502) -Z(2 (2)) +02 ‘”;a,,az,w,,wz)lKLlHZ‘” — 2(2)“’

L,=0 (ég).} (40b)

Consequently, we get, e.g., the following estimate for constants B,, 7, 7, and A, relevant to the applicability of Theorem 3:

By=(1-0(&)"", 1o=0 [Max(]|Z| dgs(> “”)],]

ro=0(no, o= O B, Max (2] “.(gs= 1),

(41)

where (X ) is a functional of 3 . Therefore, the conditions for applicability of Theorem 3 can be satisfied if ég is sufficiently
small and one chooses a zeroth approximation £  and the parameters a’s and w’s appropriately. As for the local uniqueness of

the solution, see Theorem 4.

If necessary or desirable, one can modify the definition of the norms in B, @ B, by adding some seminorms, e.g.,

¢/ supp_,, |0, (k %)/a(k %),

—w<k'«<P+a +o,

so that functions with undesirable behaviors are excluded from the domain D (Z7).
Now let us consider the applicability of Theorem 1. If one begins with 3 © with sufficiently small norm, say O (¢g) < 1, one
finds that K of (A2)is O (ég), so that for the inequality KC < 1 to hold C need not be small but may be O [(ég) ~'] > 1. On the other

hand, if cg<1 then

r=0[Cexp (1 —g)(1 —¢)~" Max (| é)]
and

C||Px|| = O[(ég) " exp (1 — g){1 — q)~ [ Z|]},

(42)

(43)

so that (A8) is a very mild condition unless g is close to 1. Theorem 2 is useful when it is difficult to solve Eq. (A7) at each stage

of the successive approximations.

It is also possible to define a new Lipschitz approximation by

ON (S y003p) = 8 f A% 75y, G ¥ S, 0,k)

XFv(k,P; —pP— k )D.';IYv(éN(Z )’al’az’ml’wz’[’ + k )) (44)

GN(Z;al’wl’p) — . Vp(l +21(p2)) _ZZ(pZ) [1 _ ew‘(al _ IPZ —PN|)]

C P+ 2P — 2o PP
yo(l + 2,(pY) — 3, pY)
L+ IV P — 2N P

etc., where TV is the N th approximation to X by the algo-
rithm (A 11), (A17), (A26), or (A31), P¥ is the zero of the
denominator of the second term on the r.h.s. of (41) with
respect to p?, etc., and proceed to higher approximations.

Similarly one can define a Lipschitz approximation and
devise an algorithm for Eq. (11), but we do not write it down
here, leaving the problem as an exercise for the reader.

Unfortunately, however, these algorithms are not ap-
plicable in the presence of constraints, but the existence
theorem 5 has a significance to the problem of DMG by
parity-violating interactions. To see this let us write the
equation for ¢ in the following abstract form:

o:(p) = 2,[0,0,,02,04 fAp] i= 1234 (46)

If one requires that the ¥ term be absent, the system (42) is
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6.l — [p* — P"|), (45)

reduced to
o, = 02,[0,,0,,0:,0, fhp], =123, {47)
0= -04[0'1:0'2»0'3:0, Shpl. (48)

If all the f°s and 4 ’s are specified as model inputs, there are
more equations than unknown functions. On the other hand,
if one of s, say Ay, is left unspecified, Eq. (18c) can be re-
garded as a constraint upon h,. Obviously, this constraint is
nonlinear with respect to o’s and linear with respect to /.
Moreover, A, and {2, do not belong to the same Banach
space. The system of equations (17) and (18) as a whole can be
regarded as an equation of the form Z'(o,h,) = O with the
map Z:DC8 =:B,¢B,9B,0B,—»% =:0/_, B, where
B, stands for the Banach space of the candidates for

o;and B,, for the Banach space of the candidates for A,. As
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the ¢’s are functions of one variable while f'is a function of
three variables, B and B’ are obviously different, and the
system = (o, f) = 0does not determine the o’sand funiquely.
But if the conditions of these theorems are satisfied, one can
say that the model under consideration has solutions.

5. CONCLUDING REMARKS

As a problem of broken symmetry, the problem of
DMG has two fairly distinct aspects. One is the group theor-
etic aspect and the other is the operator theoretic aspect. In
this note we tried to apply the modern NLOT to the latter
aspect of the problem, which is essentially concerned with
nonlinear singular integral equations, i.e., the unrenorma-
lized Schwinger-Dyson equations or simplified versions of
those equations.

As we are mainly concerned with the NLOT aspect, in
order to avoid unnecessary complications we have dealt with
the U, ,(1) models, but generalizations of the methods and
arguments to the SU(n) cases, etc. are rather straightfor-
ward, unless parity-violating interactions are involved.

So far we have presented some theorems concerning
existence of solutions of unrenormalized Schwinger—Dyson
equations with input (model) vertex parts with nice asymp-
totic behaviors, and algorithms for construction of approxi-
mate solutions. As has been seen in Sec.2, the anomalous
magnetic moment term in the vertex part generates a mass
unless the form factor satisfies some extra conditions. In oth-
er words, 3,( p?) = 0 is not a solution in general, so that one
need not look for an exotic (singular at g = 0) solution for
mass generation. (The g dependence of I'" is irrelevant here.)

It may be helpful to add seminorms to the definition of
norms in Banach spaces so that functions with undesirable
behaviors will be excluded from the domains and the radii of
the domains be increased.

Theorem 4 asserts local uniqueness of solution under
certain conditions. On the other hand, the bifurcation the-
ory?>~?* requires Fréchet differentiability, so that it is not
applicable to our equations, unfortunately.

Though one may begin with input form factors that are
complex above the thresholds of particle production, and X
and 7, also become complex above the thresholds, we do not
use the complex analyticity of those functions but treat them
as complex-valued functions of real variables, so that our
method is applicable also when, for example, the transcen-
dental equations (37) and/or (38) have complex roots. (We do
not use Wick rotations.)

Though we dealt with DGM of fermion fields with
massless Lagrangian in Sec. 2, the technique developed there
can be applied to fermion fields with massive Lagrangians.
For example, it may be worthwhile to solve equations for the
proton—neutron mass difference with various models of the
charge and anomalous magnetic moment form factors.

Though Wick rotation may be applicable to the exact
solution of Eq. (5) with the exact three-point function, one
cannot expect the applicability of Wick rotation to approxi-
mate solutions to equations with an approximate or model
three-point function. Moreover, the theory of equations with
non-Fréchet-differentiable maps may be useful in solid state
physics where the Wick rotation is out of the question.
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APPENDIX: RELEVANT MATHEMATICAL DEFINITIONS
AND THEOREMS

In this Appendix, some relevant mathematical notions
are defined and theorems are presented.

In order to formulate algorithms for construction of
approximate solutions of nonlinear operator equations with
maps that are not Fréchet differentiable, Altman'” intro-
duced the notion of Lipschitz approximation.

Definition I: Let P: D ( p)C X— Y be a nonlinear opera-
tor. Then an operator T": D ( p)—Y is called a Lipschitz ap-
proximation to P if P — T'is Lipschitz continuous, i.e., there
exists a positive constant K such that for any x,xeD ( p)

[Px — Tx — PX + T%||<K ||x — X|\. (A1)

Definition 2: An operator is called a Lipschitz approxi-
mation in the narrow sense if there exists a functional
K :D(p)—R™ and element 4 (x)eX, a sequence €, 10, and a
number g€(0,1) such that for any €€(0,1],

|P(x + €h) — T(x + eh) — Px — Tx||<eK (x)||h |,
(A2)

[T(x +e€,h)— Tx]/e,—0[x.h (x)], n—o, (A3)
(16 {x,h (x)) + Px]|<g]|Px|, (A4)

where x + €, he W for sufficiently small €, ’s.
If a Lipschitz approximation T or Pis Fréchet differen-
tiable, the Fréchet derivative T '(x) is continuous in

U= :D(p)nS (x1) (A5)
and for any xeU, where

Up = :D(p)nS (xo,1), (A6)
there exists an element 4 (x)eX such that

T'(x)h (x) + Px =0, (A7)

l# x)||<C||Px|, KC<]1, (A8B)

then one can define an algorithm as follows:

Givenx,eD(p), KC/q<B<1,and KC < g < 1, suppose
Xy, X, ,n>0 are already defined. Then put e, = 1if
@(1,x,,h,) < g||Px, ||, where

Dlexh)=:||P(x +eh)— {1 - €)Px||/e. (A9)
and 4, is the solution of Eq. (A7) withx = x,,.

If®(1,x,,h,) >q||Px,||, there exists a number €,€(0,1)
such that

Bq||Px, || <P (€,.x,,h,)<q| Px,|. (A10)
In either case, put
xn+l =xn +6nhn' (All)

In other words, the problem is reduced to the inversions of
the linear operators 7"'(x). Then we have the following theo-
rem due to Altman.!’

Theorem 1: If T'is a Lipschitz approximation to Pin U,
and T’ is continuous in U and satisfies the conditions {A7)
and (A8) in U, with radius

r>(1 —g)~'Cexp (1 — g)||Pxoll, (A12)
then x, €U, and there exists at least one x* such that
Px* = 0. The error estimate reads
lIx, —x*||<(1 —gq)~'Cb,, (A13)
Tetz Yoshimura 827



where
b, = ||Px,l| exp ((1 —g)(1 —2,)),
(A14)

Alternatively we have the following theorem, also due to
Altman."”

Theorem 2: If there exists g€(0, 1) such that for any xeU,
there exists 4 (x) such that

|7 (x)h (x) + Px||<q||Px]i,
Iz )| <C|1Px]|,
KC+g<1,

one can define an algorithm as follows. Given x,eD ( p) and
KC+g<g<1,(KC+g)/q<B<]1. (A16)

Suppose that x,,...,x, are already defined. Then put ¢, =1
or choose €, < 1 in the same way as in Theorem 1 provided ¢
and f3 are subject to the condition (A 16), and define

(A15)

Xoi (A17)

If the radius 7 of S is larger than (1 — g) ™' exp (1 — g)||Px,||
then {x,}CUand x,—x* as n— .

We have also the following theorems due to Lika'®

Theorem 3: If the conditions

1) The Fréchet derivative Q ‘(x) of an operator Q and an
operator

F=P—Q (A18)
satisfy Lipschitz conditions in a domain M with constants L
and L, respectively:

=x, +€,h,.

1Q(x) — @' <L |lx — x’l], (A19)
|F (x) — F (x| <Ly [} — x"{); (A20)
2) there exists
To=:0Q"(x)] ™", (A21)
and

17 oll<Bo, [P (xo)l|<7;- (A22)
3)BoL, <l (A23)
4) hy = :BoLno<}(1 — BoL,)’; (A24)
5) ball S (x,,r,) is constrained in M where
ro =1 — BoL; — {(1 — BoL,)* — 2h0} Inohe ™!

= R (holg; (A25)

then the equation P (x) = 0 admits a solution x*€S (x,,7,) and
the sequence {x, | defined by

Xp 41 =X, — [Ql(xn)]_lp(xn)

converges to this solution. The rate of convergence is
”'xn - x*” <R (hn )nn ’

where
L |I<B,,

(A26)
(A27)

\r,Px MN<n., h,=:B,Ln,
(A28)
R(h,m,=[1—-B,L, — {1 ~B,L)y —2h,}'?]

X (B, L)~
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Theorem 4: If the conditions 1)-3) of Theorem 3 and the
condition

&) hy<2N 72{(1 — B,L )N — 1} (A29)
for an N such that

(1 —BoL,) "< NQ2(1 —B,L))~ ', (A30)
are satisfied, then the sequence {x, } defined by

Xpi1 =%, — [Q'(x)] 7 'P(x,) (A31)

converges to the only solution x*€S (x,,/N7,) of the equation
Px =0, i.e., the solution x* is locally unique. The error esti-
mate reads

1, — x| <Ny + BoL )"0l — Nhg — BoLy) ™. (A32)

In order to see the existence of solution of problems
with constraints Theorem 5 below, also due to Altman,'” is
useful.

Definition 3: The set I', (@ ) of special contraction direc-
tionforamap @ : D (P }—YatxeD (P )isdefined as the set of
elements yeY such that there exist numbers B,g€(0,1),
€€(0,1], and an element XX such that

| @x — Px — ey||<gelly|,

where the distance between x and x,d (x,X)<€|[y||.

If @ is a closed operator, one can state the following
theorem.

Theorem 5: Suppose

1)@ : X,—Yisclosed on U = :X,nS where X, is a subset
of X and S the closure in X of the ball

S (xor) = :{x€X |d (x,x,) <7}; (A34)

2) for any xeU, = X NS the set I, (P ) of special con-
tractor directions is dense in some ball in Y with center 0;

3)r>B(1—q) | Pxyll, g<d<l; (A35)

then the equation @x = 0 has a solution x*eU. The main
difficulty in application of this theorem is to verify the dense-
ness of the special contractor directions in a ball in Y for a
given map P.

(A33)
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Some properties of nonabelian gauge fields invariant under a given group of spacetime
transformations are studied and applied to the case of spatial homogeneity and isotropy. All the
k = 0and k = 1 Robertson-Walker models filled with a SO (3) gauge field are derived.

PACS numbers: 11.10.Np, 11.30. — j, 04.20.Jb

1. INTRODUCTION

A gauge field of the Yang—Mills type is said to be invar-
iant under a Lie group of spacetime diffeomorphisms G if
and only if any element geG induces a transformation of the
potential that can be compensated for by a gauge
transformation.'

The first purpose of this paper is to derive some proper-
ties of invariant Yang—Mills fields. This study is illustrated
in the case of spatial homogeneity and isotropy. It is shown
that there exists spatially homogeneous and isotropic non-
abelian configurations which are not pure gauge (this is in
sharp contrast with electromagnetism). We end up with the
resolution of the coupled Einstein—-Yang—Mills equations
under these symmetry assumptions.

The gauge field is taken to be SO(3). The spacetime
manifold and the Yang-Mills potential are, respectively, de-
noted by M and 4 ( = 4 ;; T,dx" in local coordinates;
[T,,T,] = € T.). A (P)is the value of 4 at PeM.

2. SYMMETRIC GAUGE FIELDS

When the gauge field 4 is G-invariant (or, as it is also
said, “G-symmetric”’), there exists a differentiable (up to the
required order) application R from M X G to SO (3} such that

(g*4)(P)=R(Pg)d (P)R ~'(P.g) +dR (PgR ~ ‘(1(’,31))
2.

and reciprocally. Here, g4 is the transformed potential ob-
tained from A4 by the usual pull back of 1-forms.

The connection 1-form w(4 ) defined on the correspond-
ing principal bundle—supposed to be the trivial bundle
M xS0 (3)for simplicity>—is invariant by a group H of bun-
dle automorphisms whose action on the base M is given by G.
However, as we shall show, G is isomorphic to no subgroup
of H in some cases. This leads to difficulties in the study of G-
invariant gauge ficlds.

The compensating gauge transformations R (P,g) are
gauge-dependent. In a new gauge, the gauge transformations
R '(P,g) given by

R'(Pg)=Ulg(P)R (Pg)U " '(P) (2.2)
satisfy (2.1), with 4’ = UAU ~' +dU U "' in place of 4.

Let .% be the group of gauge transformations that leave
A unchanged. It is easy to prove that the gauge transforma-

*Aspirant du Fonds National Belge de la Recherche Scientifique.
“’Permanent address: Interactions Fondamentales, Université Libre de
Bruxelles, Campus Plaine C. P. 228, B-1050 Bruxelles, Belgium.
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tions C{P.g,.g,) defined by

C(Pg.g) =R ~'(Pg)R ~'(g,(P)gIR (P, g, 8) (2.3)
belong to .# (in the product g,g,,g, acts first). They are obvi-
ously modified when, instead of the application R, one uses
the compensating application R (P,g) L (P, g), L (P, g)e.¥. A
necessary and sufficient condition for the existence of a set of
compensating transformations R (P,g) = R (P,g)L (P,g)obey-
ing the simple composition rule

R (Pg:g\) = R (g,(P).g2)R (P.g)) (2.4)
is that C (P.g,,g,) — I can be made to vanish by a suitable
choice for L (P,g). This is not always the case. Consider, for
example, the flat space potential 4 (x*) given in Minkows-
kian coordinates by M5°x', where M is a constant matrix
belonging to the SO (3)-algebra. This potential is translation-
invariant; with the 4-translation ¢* which maps x* on x* +
a*, one can associate the compensating gauge transforma-
tions R (x*,a*) = exp[(a'x® + f(a*))M ]. Computing (2.3) for
any two translations a* and b#, one finds
C (x*;a",b*)

=expl(—b'a" + fla* + b¥) — fla*) — fb*)M ] #1.
Indeed, the exponent cannot vanish for alla“,b * since b 'a°is
not symmetric under the exchange a“<—b*.

It is only when (2.4) holds or can be made to hold that
the action of the group G on M can be “lifted” to the bundle
M XSO (3) in a manner that preserves the group structure.
Indeed, let g be an element of G and R (P,g), one of the corre-

sponding compensating gauge transformations. They define
a transformation of the section M X {1 },

ho\PI)—h,(P1)=(g(P),R ~'(Pg)),

that can be extended in a unique way to the whole of
M XSO (3)if one requires that 4, be a bundle automorphism
[i.e., commute with any element of SO (3)]:

hy:M XSO (3}—M %SO (3):(P,Z)—{g(P),.%#R ~(P.g)).(2.6)

By construction, the connection  is A -invariant: 4 Yo = o
[use (2.1), (2.5), and (2.6)]. However, if (2.4) does not hold,
hy 5. #hg by, . The difference is a transformation along the
fibers. Let H be the group generated by the 4, ’s. It is a sub-
group of the group of bundle automorphisms that leave the
connection 1-form @ invariant. It possesses a ‘“normal” (or
“invariant”) subgroup.#", which contains all the elements of
H that map each fiber on itself (i.e., the action of .#" on the
base space M reduces to the identity)..# is also a subgroup of
% . The group G is the quotient of H by .#". The existence of

(2.5)
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a group homomorphism H—G does not imply that G is iso-
morphic to some subgroup of H.

The classification of G-invariant gauge fields must be
based on a classification of all possible groups 4 and.#” with
the above properties. Two cases need be considered here: (i)
A" = {I}; (ii} 4" contains a one-parameter subgroup, say
{e**P)} (1€[0,27), @ (P)eSO(3)-algebra).

In the first case, H and G are isomorphic. The compen-
sating gauge transformations R (P,g) obey the composition
law (2.4), from which the relations

R(Pe) =1, (2.7a)
R(Pg~')=R'(g~'(P)g) (2.7b)

follow. The construction {up to a gauge transformation) of ali
G-invariant Yang-Mills fields may be found in the litera-
ture.> We shall not repeat it in this note; rather, we shall turn
to the second case.

3. THE QUASIABELIAN CASE

If the gauge transformation ¢*¢'") leave the potential 4
invariant, the field ¢ (P} is covariantly constant. Let us as-
sume for simplicity that the spacetime manifold M is con-
nected and has a zero second Betti number. In the SO(3) case,
this implies the existence of a gauge in which ¢ is constant,
A(P)=a(P)p(d4;(x)=a,(x)p°), and F(P)=f(P)p
(Fix) =f,, (xlp % f = da).

Unless the field strengths all vanish, any gauge transfor-
mation L (P ) that leaves the potential unchanged belongs to
the group {e*®} (use F = LFL ~'), which thus coincides with
V. Besides, any gauge transformation R (P,g) satisfying (2.1)
must be a (point-dependent in general) rotation about the
direction in isospin space determined by ¢. The SO(2) poten-
tiale (P)is G-invariant (g*¢—a is a gradient) and the problem
is completely reduced to the abelian one.*

We shall merely analyze here the properties of G-invar-
iant abelian potentials from a local point of view. For the
sake of briefness, we shall also assume that the group G acts
transitively on M. The discussion can readily be extended to
more general situations.

In local coordinates, the invariance equations (2.1) read

£,a,=—3d.x4, (3.1)
where £,(4 = 1,...,n) are the generators of G. The scalar
functions y ,(x) are submitted to the following conditions.

aﬂ(f:g‘l’s - £§,XA - C;:BXC) =0, {3.2a)
which one easily derives from (3.1). Here, the constants C §;
are the structure constants of G ([£,, €5 ] = C $z£¢). From
(3.2a}, it follows that

£ x5 — £, X4 — CSBXC =K, 3z,
where K ,; are antisymmetric constants obeying

C25Kpc + CocKpy + C2Kpp =0 (3.3)

[to get (3.3), take the Lie derivative of (3.2b) with respect to
&, and add to the resulting expression the similar ones ob-
tained by cyclic permutations of (ABC})]. Moreover, these

(3.2b)
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constants are gauge invariant (i.e., invariant when the func-
tions y, are replaced by vy, + £, u).

The geometrical meaning of the K ,;’s is clear: let
&, = (£%(x), xy4(x)) and 77 = (0,1) be the generators in
M X SO(2) [local coordinates used: (x*,4 )] of the n + 1 di-
mensional Lie group H (the lift of G on the bundle). The
vector fields £, commute with 7:

[E4m]=0, (3.4a)

because they generate bundle automorphisms. It is easy to
compute the other structure constants of H:

(465 =CSslc + K, (3.4b)
(7.7] =0. (3.4c)

The relation (3.3) is nothing but (part of) the Jacobi identity
for these structure constants.

The generators £, are determined up to arbitrary multi-
ples i, 77 of the vector field . This amounts to adding arbi-
trary constants u, to the functions y ,(x), and results in a
change of the constants X ,; given by

K5—K 5 =K — Clplic- (3.5)
Two sets K ,; and K /,, that differ by such a combination are
to be identified. One can use this arbitrariness to give some
*“canonical” values to K ;. For example, one can assume
K ,; = O when the group G of space-time diffeomorphisms is
two-dimensional and nonabelian, or three-dimensional and
of Bianchi type VIII or IX. The G-Lie algebra is isomorphic
to an H-Lie subalgebra in those cases.

Let S (P,) be the “isotropy” (or “stability”) subgroup of
G at some reference point Py, and let £* =d 4£,
(@=1,..m=n —4)beits generators ([£*, £¥] = CS, € ¥).
Asisknown, they vanish at P,. However, the gauge invariant
constants k, = d }y ,(P,) do not necessarily vanish and can-
not, in general, be made to vanish by a transformation
Ya—¥4 + g satisfying C $ppe = 0. Thus, even when
K » = 0, therelation {3.2b) does not imply that the functions
Y. are the components of a gradient (i.e., ¥,

= &, p( = £4u,)). The remaining arbitrariness mentioned

above can nevertheless be used to bring the numbers k, to
some canonical values.

Consider two sets of functions y ,(x) and y/, (x) defining
the same constants K ;5 and k. It is easily shown that they
differ by a gradient:

XaxX) = xi4x) = £ pulx).

Accordingly, the vector field £, is mapped on the vector
field £/, by the gauge transformation
x*=xrA"=A + ux).

It results from this analysis that the lifted groups H and
their action on the bundle M X SO(2) can be classified ac-
cording to the various canonical values of the pair (K ,z,k; ),
subject to the conditions (3.3) and d #d 2K ,, = — C%,k,.
Given such a pair, one can integrate, at least locally, Eqs.
(3.2b) for y,, with the “initial” conditions d 2y ,(P,) = k,,.
One can then find all the corresponding G-invariant gauge
fields a, by solving the invariance equations £; @ = 0 for
the connection form = (a,,(x),1); this is a standard problem
of differential geometry. In most cases, however, it is simpler
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to construct all the G-invariant field strengths
Juvl&e, [, = 0) and to require that they be closed.

4. SPATIAL HOMOGENEITY AND ISOTROPY

Suppose that M is a pseudo-Riemannian manifold of
the Robertson-Walker type; its metric possesses a six-di-
mensional group G, of isometries acting on a one-parameter
family of spacelike hypersurfaces. In standard coordinates,
one has

ds’ = —dt*+ b*t)do?, (4.1)

where do” is the time-independent metric of a Riemannian
three-space of constant curvature k. For simplicity, only the
k = 0 (flat) and k = 1 {closed) models will be considered
here. We intend to find all the SO(3) gauge fields that share
the symmetry of the metric.

The quasiabelian case is not interesting, since the
Yang-Mills field would be pure gauge. Indeed, the field
strengths would vanish as a result of the symmetry require-
ments.

We shall thus turn to the case .#" = {I }. In order to
derive all the homogeneous and spherically symmetric
Yang-Mills fields, we shall use the properties (2.4), (2.7a),
and (2.7b) of the compensating gauge transformations
R (Pg)

As is known, the group G of isometries has a three-
parameter subgroup, called here the “translation” group,
that acts simply transitively on the surfaces £ = const. This
groupis abelian when & = 0, and of type IX (according to the
classification given by Bianchi) when k = 1. Let
{dt,0™ = w™(x*)dx"} be a set of independent translation-in-
variant 1-forms. In this paragraph, latin indices take the
“spatial” values 1,2,3. The 1-forms ™ can be chosen so that
do™ =2"'Cr o’ Ao (with C}, = ke, ) and
do? = 2, (@™ (see the book by Ryan and Shepley?).

It is always possible to find a gaugein which R (P,g) =1
for all translations. Indeed, consider an arbitrary reference
point P, and all the other points P, P ...that lie on the same
t-coordinate line (one such reference point per hypersurface
of transitivity). By performing the gauge transformation
U(P)=R ~'(PyP)gr) = R (Pg, "), where g, is the unique
translation that maps on P the reference point Py(P ) belong-
ing to the same hypersurface of transitivity, one gets new
compensating gauge transformations R '(P,g) which all re-
duce to the identity. In this gauge, the Yang-Mills field is
strictly translation-invariant (g*4 = A for all translations).
Accordingly, one has

A=Ayt)dt + A, (t )™, (4.2)

where the matrices A, and 4,, depend only on ¢. Time-de-
pendent gauge transformations leave the potential (4.2)
form-invariant.

Let us now analyze the conditions resulting from the
isotropy. The application R defines group homomorphisms
from the isotropy subgroups S (P ) to SO(3) because it obeys
the composition law (2.4). Since the groups .S (P} are all iso-
morphic to SO(3)—we exclude spatial reflections from G.—
their image by R can only be the trivial group {I } or SO(3)
itself. If two points belong to the same surface of homogene-
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ity, their stability subgroups are mapped on the same SO(3)
subgroup. This is a consequence of the relation

R(Pg) =R (Po(P)u), u=gup\88peS(Po(P)), (4.3)
which holds for any geG, in the gauges chosen above.

Suppose that the isotropy subgroups at all reference
points—and thus everywhere in spacetime—are mapped on
SO(3) (if the continuous application R maps these subgroups
on {I}, the potential 4, being strictly symmetric, is pure
gauge). After an appropriate time-dependent gauge transfor-
mation is performed, any spatial rotation about the reference
points is compensated by the ““same” rotation in isotopic
space. In that particular gauge, R (P,,g) is independent of the
hypersurfaces of transitivity. Moreover, since the transla-
tion group is an invariant subgroup of G, one can infer from
(4.3) that R (P,g) = R (P,,g), i.e., dR = 0. The invariance
equations read

R,A5=RiA;, A5=R;A; (4.4)
for every R 7 €SO(3). This implies
At)=a(t)T, o (4.5)

The field (4.5) is, up to a gauge transformation, the most
general spatially homogeneous and spherically symmetric
SO(3) Yang—Mills field.

By direct computation, one gets the field strengths

F(t)=dT,dtNo™ + 27" (ka — a*)T ", ,, 0" Ao’.
(4.6)

In the flat model, they vanish at a = O, whereas in the closed
one, they vanish atbotha =0anda = 1.

5. A SOLUTION TO EINSTEIN-YANG-MILLS
EQUATIONS

On account of its symmetry, the energy—-momentum
tensor of the Yang—Mills field is a function of time alone and
has the perfect fluid form. Moreover, the pressure it defines
is equal to one-third of the energy density
€[2€ = 3b ~*(b%d* + (ka — a*)?)], because its trace vanish-
es. The solution to Einsteins’ equations for the metric b is
thus well known [b~ '/? in the open model and b ~ sin 7,
t~(1 — cos n) in the closed one]. As to the Yang-Mills field,
it is determined by quadratures from the conservation law
€b® = const. This problem is equivalent to the integration of
the one-dimensional motion in the positive quartic potential
(ka — a*), which has two minima in the £ = 1 case.

This example shows the existence of nontrivial, nonsta-
tionary, spherically symmetric and homogeneous real solu-
tions to Yang-Mills equations (with finite energy when the
spatial sections are closed). Such solutions have no analog in
the electromagnetic case. Their detailed physical signifi-
cance (if any) is, however, not known.

Note added in proof: The interested reader might have
noticed the great similarities between the question studied in
Sec. 3 and the problem of ray representations of Lie groups:
V. Bargmann, “Ray Representations of Lie Groups,” a se-
ries of six lectures delivered at the University of Texas on
Feb. 23, 25, 27 and March 2, 4, 6, 1981 (unpublished); Ann.
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Math. 59, (1} (1954). In both cases, one lifts a group of trans-
formations defined on the base space to the bundle space of
an appropriate fiber bundle. After this paper was completed,
the author became aware of the following works, which deal
with similar topics: Gu Chaohao and Hu Hesheng, Com-
mun. Math. Phys. 79, 75 (1981) (spherically symmetric
gauge fields) and A. V. Gaiduk, Theoret. Math. Phys. 44,
795 (1980) (translation-invariant gauge fields).
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An ansatz yielding propagating wave solutions for pure SU(3) gauge theories is exhibited. The
solutions are self-dual and have a superposition property like their SU(2) analogs. Possible
generalizations of the ansatz which may be used to obtain additional irreducible SU(3) solutions

are also suggested.

PACS numbers: 11.10.Np, 11.30.Jw

I. INTRODUCTION

SU(2) Yang-Mills theories provide the simplest exam-
ples of theories with a non-abelian gauge symmetry and
hence have been the focus of most investigations. However,
since the strong interactions may be mediated by an octet of
color SU(3) gauge fields, it is also important to consider clas-
sical solutions of SU(3) gauge theories. Apart from the possi-
bility that such solutions will be relevant to the quantum
theory, the study of SU(3) solutions is attractive for a number
of other reasons. Firstly, results obtained for SU(2) theories
generalize readily to higher rank gauge groups since it is
always possible to embed known SU(2) solutions. Secondly,
because SU(3) has an inherently more complex structure
than SU(2), it is possible that some nontrivial generalizations
of SU(2) solutions exist, apart from the straightforward em-
beddings. Finally, unlike the SU(2) case, it is possible to con-
struct a stable solution to the pure SU(3) gauge field equa-
tions without the introduction of explicit scalar fields.’

A large number of SU(3} solutions have now been dis-
covered. These include generalizations of the ‘t Hooft-Po-
lyakov monopole' and the Prasad—Sommerfield mono-
pole,” as well as SU(3} dyons.® Models of SU(3) monopoles
coupled to fermions have also been considered.’

SU(3) instantons with topological charges of + 1 and
+ 4, corresponding to the two inequivalent embeddings of
the group SU(2) inside SU(3),'>'! have been obtained. Irre-
ducible SU(3) solutions have resulted from an O(3) symmet-
ric ansatz'*'? corresponding to an SU(3) generalization of
Witten’s cylindrically symmetric multi-instanton solution. '
SU(3) versions of meron'® and multimeron'® configurations
also exist and investigation of complex SL(3,C ) self-dual
fields'” has yielded a number of interesting nontrivial
solutions.

The Corrigan—Fairlie-‘t Hooft-Wilczek (CFtHW) an-
satz,'® however, has not yet been generalized to SU(3) due to
the difficulty of finding an analog of the ‘t Hooft tensor 7,,,, .
We have utilized a particularly simple version of this ansatz
for the investigation of propagating wave solutions in SU(2)
gauge theories.'® In addition to the natural interest in SU(3)
versions of these solutions, we might hope to gain some indi-
cation of possible generalizations of 7,,, appropriate to
Su(3).

“Work supported by the Department of Energy, contract DE-AC03-
76SF00515.
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In Sec. I we exhibit a generalization of the O(3) sym-
metric ansitze used by other authors®'? to find SU(3) solu-
tions. This generalization is shown to yield the SU(3) version
of the wave solutions mentioned above. The self-duality
properties of the ansatz are considered in detail in Sec. III
and possible generalizations which may be useful for finding
the SU(3) analog of the CFtHW ansatz are discussed in Sec.
Iv.

1l. SU(3) WAVE SOLUTIONS
We begin by writing the gauge potential 4, and field

strength F,,, as matrices in the space of infinitesimal group
generators
A, °T®
A, =+ 2.1a
. 2 (2.1a)
F c°T*
F, =t 2.1b)
# 2 (
with
F,=8,4,—-3d4,+[4,4,] (2.1¢)

The equation of motion may thus be written as

D'F,, =d&F,, +[4"F, =0 (2.2)

For SU(2) gauge theories the matrices T'“ are given by
the 2 X 2 Pauli matrices 0%, a = 1,...,3, whereas for SU(3)
gauge theories they are chosen to be the usual 3X3 Gell-
Mann matrices 4% a = 1,...,8.

As discussed in an earlier paper,'® a suitable ansatz for
wavelike solutions of SU(2) gauge theories characterized by a
propagation vector k,, is given by

A, =io, k f(kx), (2.3)
where k-x = k#x,,. Equation (2.3) is just a special case of the

CFtHW ansatz. The antisymmetric matrices o,,, satisfy the
O(4) commutation relations and are defined as usual by

1
gij = @ [0,,0;]

and
04 = k0, (2.4)
or

ayv = nauvaa/z’
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with

Napv = €apvs GV = 1,2,3
=6,, v=4 (2.5)
The CFtHW ansatz may be extended to Minkowski space
[our metric is g“¥ = diag ( + — — — )] by defining
0';0 = iai/z-

The set of g,,, matrices thus obtained satisfy O(3,1) commu-
tation relations and yield complex solutions in Minkowski
space. In the particular case of ansatz (2.3) one class of self-
dual solutions with a restricted superposition property is ob-
tained provided that k > = k, k* = 0. Since the function

S (k-x) remains completely arbitrary, these solutions may be
regarded as non-abelian generalizations of electromagnetic
plane waves. The Euclidean space version of these solutions
with k2 = O is of course trivial.

In order to obtain SU(3) versions of these SU(2) wave
solutions, we begin by defining a generalization of the O(3)
symmetric ansdtze used by Horvath and Palla® and Bais and
Weldon."® As in the SU(2) case it is possible to exhibit the
ansatz in either Euclidean or Minkowski space.

A. Euclidean space version

We choose the SU(3) gauge potentials to be

k.k
A; = i€y k; L H (v) + i€ ;ki O, G (v) + iL; k4D (v)

. k] k4 .
+iQ;; T E(v)+ ik;,L;k, A (v)
krks ki
k

+iQ, B v), (2.6a)

Ej = i[(ejrski - eirskj)[ers(H’ +

— €,k k L(H+GY—€

ijp™p

X [koD ' — ky(HD + 2GE) — K¥AH + 2BG)] — 2¢

Qjm km ki Qim km kj
(B
k,

k
L,kj2(D*+ E?) - 2¢,, —’"ki k2DE + (k,L;

. . kakb
A4 = - lLa kac(v) - lQab

F(v), (2.6b)

where v = k,x, = kx| + kox, + kyx, + kox,,

k= |k|,

(La)ij = ieiaj’

(Qab)ij = 6ai6bj + 6aj6bi - §5ab5m i,ja,b =13
and H, G, D, E, A, B, C, F are unknown functions of v. It can
be seen that ansatz (2.6) corresponds to the most general
form of the potential which can be constructed from L,,Q,,,,
and the vector k,, and reduces to the simple SU(2) embed-
ding if

G=D=E=A4=B=F=0.

L, and @, satisfy the commutation relations

[La ’Lb ] = ieabch!

[La ’ch ] = i(ecna an + €bna an )!

[Qab ’ch ] =

i(sadebcs + 6bd€acs + 6bc6ads + 6acebds )Ls‘ (270)

(2.7a)
(2.7b)

The Lorentz condition d,4,, = 0 is satisfied if

2 ’

py X4 ¢ (2.8a)
ks
2 '

E'+ kkB —F', (2.8b)

where the prime denotes differentiation with respect to
v=k,x,.

It is straightforward to calculate the field strengths
from Eq. (2.1c),

2 k k
o +k,,AD+2k4BE)+%(G’—HG+k4AE+2k4BD)

¢ kL)

k., k
k -—Q""k” £ HG

ijs'™s

)[k4E' — k2HE + DG ) — K¥AG + 2BH )]

- (eirm Qmj - 6.jrm Qmi) ? (kZHG + k42DE )], (298)
Fu = "[fffkkakW '—CD —2EF ki + €1k, —Q7:"’—k4(G' — CE—2FD) + L, (k2D + K{HC + 2FG ]
&,
+ “‘—Q;( ~ [k’E’ + K(2HF + CG)] + k; [L,k,(C' + kA’ — HC — 2FG)
Q"Sk"ks 3
+ = (F +k4B’—2HF—CG)”. (2.9b)

Equations (2.9) may now be inserted into the field equa-
tions (2.2). In order to illustrate the simplifications required
to obtain the field equations in a suitable form it is conve-
nient to conisder

0:Fy + [4,,F,;]=0. (2.10)
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From Eq. (2.9b) it follows immediately that
3,F,, = i{L.k,(k2D" +KC" Kk, A")
+(Quk k,/k) (kl2E") + K°F" + kk*B")}.
(2.11a)
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The Lorentz condition (2.8) may be used to simplify this
expression to

k k
8,F, = i\Lk;k,2C" + Luskaks k,*F ] (2.11b)

where k,” = k.2 + K.
Similarly, the inhomogeneous term in Eq. (2.10)
becomes

[4,,F]) =i{k,L;| —k*2CD*+ 2CE? + 8EFD)
+2DH’ — 2HD' —K2CH? + 2CG?
+ 8HGF) + 2EG’' — 2GE'] + (Q,k;k;/k)
X [ — kH6FD? + 6FE? + 6ECD)
+3DG' —3GD' — k}6FH?® 4 6FG?* + 6GHC)

+3EH' —3HE']}. (2.12a)

Upon choosing

p={glmaz- {2}
Eq. (2.12a) simplifies to
[Ai’F 4 ]

= i[ — k;L,k,*(2CH? + 2CG* + 8HGF)

A AN

— -Q”kﬂ k,(6FH’ + 6FG* + 6CHG)}. {2.12b)
The important point to note in Eqs. (2.11b) and (2.12b)
is that they are now multiplied by a factor k,%. When these
solutions are continued to Minkowski space, the class of so-
lutions with k, > = 0 will automatically satisfy the equations
of motion and represent the SU(3) analogs of the self-dual
propagating SU(2) wave solutions obtained in earlier work.
The field equations for the field strengths F; may be
simplified by the methods described above, and after much
tedious algebra, the equations of motion finally become

k,f[k,L,(c" — 2HC — 2CG?* — 8HGF)
k.k.
+ %(F — 6FH> — 6FG? ~ 6CHG)) =0
(2.13a)

and

ot )
T |\t T, k, ky/k
X [H" — H®—THG? — 4GFC — 4HF* — HC?]

ka kS sn
+ (6,.,,, kQ +{Qnk ka/koL; })
X[G" —G*—TH?*G — ACHF — 4GF* — GC?]

k

+k—“2—kl-L,,ka [C" — {H ] —2H*C —2G*C — 8HFG

Gl/
[I—I3 + 7HG?* + AGFC + 4HF? +HC2”
G?+ 7TH?*G + 4CHF + 4GF* + GC?
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+k,-Q.~mk,~k.,.k4 ,_[H"
k3 G’
lH3+7HG2+4GFC+4HF2+HC2H]__0
G’ +TH?*G + 4CHF +4GF* + GCc2 ||| — 7

]—6FH2—6FG2—6GHC

(2.13b)
where the terms in braces correspond to choosing
H G
b= [G] E= [H]
Hence solutions of Eq. (2.13) are obtained if
(i) C"—(2CH?+2CG*+ 8HGF)=0, (2.14a)
(i) F"—6(CHG+ FH?+FG?*=0, (2.14b)

(iii) H” — (H?+ THG? + HC? + 4GCF + 4HF?)

=0, (2.14¢)
{ivy G” —(G?+TH*G + GC?* + 4HCF + 4GF?
=0, (2.14d)
or
k,>=0. (2.15)

The trivial SU(2) embedding is recovered by setting
H=C(,
G=F=0.

B. Minkowski space version

By analogy with the SU(2) case, the ansatz for the Min-
kowski space version of the above solutions may be written
as

A;
X k’k*Q,, G . kik°E
= i€; 3 k'L H + i€, _.___%“’_ —L,k°D — &_k____
. k'k’k,B
+ kijkiA + 'Q’s—k“l—', (2.16a)
ayl b
A, =L, k°C+ @, kk F. (2.16b}

Inserting ansatz (2.16) into Eq. (2.1c) yields the field
strengths:

F, = [ie,.jkka,‘(H’ + CD + 2EF)k° + i€,
v kik?Q,,k°

k
+ L[ —k,2D' — K{HC + 2FG )]

i
+0, f‘; [—&,2E’ — KYCG + 2HF)]

(G' + CE + 2FD)

+ K, [ij"(koA ' €' — HC — 2FG)

kek?®
+ &’k—— (k,B'—F' — CG — 2HF)]] (2.17a)
and
k2 )
Fij = [(iejrski — i€i,skj) Lskr(H’ —+ ;‘Z—E

kPk”

+k°AD + 2k °BE ) + 0y — —
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X (G'+HG+k°AE+2k°BD)]
— i€, , k'L, kS(H2+G2)+te

+ 2i€;, Q Z K k,’DE — 2ie, .k °Q,,

2(D2+E2)

k "k P
kHG

ijp™p

+ (kL k°D' —
—kZ(AH+2BGn+(Qjm
X [—k°E' —

k r
- (eirm Qmj - ejrm Qmi

— kL) — k°(HD + 2GE)

k"k, k™k, )

k - Qim k
k°(GD + 2HE) — kK*AG + 2BH)]

— ik,2DE )}.

Substituting these expressions into the field equations it
is found that just as in the SU(2) case, solutions are obtained
if Eqgs. (2.14) or (2.15) are satisfied, where now
k,? = k,* — k* Hence the fields (2.17), with the functions C,
F, H, and G remaining arbitrary and depending on a propa-
gation vector k, such that &, 2 = 0, describe the SU(3) ana-
log of SU(2) nonabelian plane waves. Clearly for these solu-
tions just as in the SU(2} case, it is possible to superpose
gauge fields of the form (2.16) and still obtain a solution of
the field equatons.

As expected, the properties of SU(3) plane wave solu-
tions do not differ significantly from those for SU(2) gauge
theories.

The important result of this section is not the investiga-
tion of these properties, but rather the construction of the
ansatz (2.6) or (2.16) in such a way as to ensure that the equa-
tions of motion reduce to expressions multiplied by an over-
all factor of k.

Ill. SELF-DUALITY PROPERTIES OF THE SU(3) WAVE
SOLUTIONS

It is interesting to examine the consequence of demand-
ing that the field strengths (2.9) satisfy the self-duality condi-
tion. For convenience the Euclidean space solutions are con-
sidered; however, analogous results may be derived for the
Minkowski space solutions.

To obtain the duals of the field strengths (2.9) it is much
more convenient to express them in a covariant form. Ac-
cordingly, the gauge fields (2.6) are written as

k,k
A, =itk H 4 iy pkoky St i€, ZP K B

k kk,

+ itk K, i (3.1)
*k,
where

K, =6,k k, —k,k, (3.2a)
= |k|, (3.2b)
Tuv = Nagwle, a=1,.,3, {3.2¢)
§uvaﬁ = - napanbvBQab’ a’b = 1""’3 (32d)

and 7,,, is the ‘t Hooft tensor defined by Eq. (2.5).

The tensors 7, are seen to correspond to the embed-
ding of the SU(2) tensors o,,,, inside SU(3) which yields in-
stantons with charges ofg = + 4. The tensors £,,,,, have no
analog in SU(2). With the aid of the somewhat cumbersome
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commutation relations given in Appendix A, the field

strengths may be evaluated:

F,, —l[(rvp Y — Tupk )k (H' — H* — G?)

K
Tou y y(H2+G2)+( Tyvp y_TupKv)k_p

4

(AH + 2GB +

x(4°

k. kg
X —=(G
ral

sz)
k?

Gkk ) + Eavapky,

k
"= 3GH) — ¥4y, = GHE K,

k k
+ (KK, — K k) s kk”(

4

+ (§4vaBK §4yaBK

1
— (Kvk” — kK, )k,

5 duaf kv

' — GA — 2HB)

(3.3)

It is trivial to check that Eq. (3.3) is 1dentlcal to the field

strengths (2.9)for D= Hand E = G.
The dual of Eq. (3.3), °F,,,
calculated using the formulas given in Appendix B:

'F, =i[~—(7’ k

uv vau =

Tuakv)ka(H’ ____HZ - GZ)

47k k H —(1,,K

vhUTYTTY

TK)——

vatru k
4

AH+ZGB+ ) v
( k2 l‘ Y Yk4

AN
X (AH +26B + =54 | + pnaaka by

< ‘”‘)

Tap k

= le uvap F,z, may now be

P

4

- (§4vy6ku - §4y76 v)
k. k k, G’
X —’I;i(G' = 3GH) = £op
k2
— Eappy — s (GA + 2HB )k k
- (§4V7’5K}l - 54;;7«5Kv) (GA + ZHB)
kk,
k‘l kfj ]
+ € kak by Sasap (B"— GA — 2HB);.
kk,
(3.4)
Comparing Egs. (3.3) and (3.4) it is easy to see that the
anti-self-duality condition “F,, = — F,_, is satisfied if
k,k, =0 (3.5)
or
k2
(i) H’+H’+2G2+k—(AH+2GB)=O, (3.6a)
4
(i) 4'—{(4H + 2GB + G?*k.,/k* =0, (3.6b)
2
(iiiy G'+ 3GH + l}:— (G4 +2HB)=0, {3.6¢)
4
(ivy B'—GA—2HB=0. (3.6d)
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It is not difficult to check that the self-duality equations
(3.6) imply the equations of motion (2.14), by remembering
the Lorentz condition for the ansatz (3.1) is satisfied if

k’4

H+ =C,

4
k’B
4
Hence, as expected the k, > = 0 solutions for SU(3)

gauge theories are anti-self-dual, just like their SU(2) ana-
logs. The system of Egs. (3.6) gives a set of first order equa-
tions for wavelike SU(3) solutions, which although simpler
than the corresponding equations of motion, are still not
trivial to solve.

G+ =F.

IV. REMARKS

(i) The form of the ansarz (3.1) is very suggestive. With a
suitable choice of the functions G, B, and A4 it reduces to an
embedding of the CFtHW ansatz inside SU(3). From a gen-
eralization of Eq. (3.1), a possible candidate for an SU(3)
version of the CFtHW ansatz may be written as

A, =it d,Inh+if, .5[(d,In C)d.znf)
— (0,1 f){d,5In C}], (4.1)

where 4, f, and C are some superpotentials. It is not difficult
to show Eq. (4.1) satisfies the Lorentz condition.

The field strengths and their duals resulting from an-
satz (4.1) have been evaluated. The algebra is rather involved
and unfortunately applying the self-duality condition does
not lead to the nice simplification which occurs for SU(2).
However, it is still possible that (4.1) results in some simplifi-
cation of the equations of motion, so further investigation of
this ansatz is indicated.

(ii) We have recently obtained the most general self-dual
SU(2) plane wave solutions®” by the use of Yang’s R-gauge
equations.?’ Yang’s formulation has also been extended to
the gauge group SU(3).?? Just as in the SU(2) case, it is not
difficult to see that the most general self-dual SU(3) plane
wave solutions may be obtained by simply requiring that the
functions used in the R-gauge ansatz be dependent on the
Lorentz scalar k-x.

ACKNOWLEDGMENT

I would like to thank Professor B. H. J. McKellar for
critical reading of the manuscript and to acknowledge the
hospitality of the Theory Group at SLAC, where part of this
work was completed. I am also grateful for the financial as-
sistance of an Australian Postgraduate Research Award and
a University of Melbourne Travelling Scholarship.

APPENDIX A

The commutation relations for the tensors 7,,, and
§,.p0 as defined by Eqs. (3.2¢)~(3.2d) are given by

[T,u.v ’Tp6 ] = i(Tppavé - T;usavp + Tvéa;tp - Tvpayts )’ (AI)
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[§ wvap Tpo ]
= i(glt\'apaﬁa - §;wm76/3p + §uﬁa06VP - §uﬁar'5"0
+ &vuppOar = EvuboOap t SvapeOup — Svapouo)  (A2)
[§#m/3 'gﬂﬂyé ] = (8u0806 —»(Sub&aa) [TVB ’Tm’]
+ (‘Sva‘sﬁa - 5v65/30) [T;uz ’Tpr]
+(6,,05, — 8,,05,) [7heTors ]

+ (5;1;) 501/ - 6;1}/511;1 ) [T\/B!Tats ] (AS)
APPENDIX B
Using the well-known identity
€.kos 770;1/( = Navk 6;417 + naavaﬁk + naka‘s;tt" (Bl)
the duals of the tensors 7, and £,,,,; may be evaluated:
%61.“'{1/37-/3;1 = Tv;taap + Tav(spy + Tuaapv’ (Bz)
%ey\/aﬁgﬁpyﬁ = - %(é‘upr&ya + gap;uﬁ&yv + §vpa657p)’
(B3)
%epvaligﬁpnb = - §;va6’ (B4)
%ﬂn/aﬁé‘mféﬁ = - %€uva/3§/}‘m‘)’a
= _}1 pva/}ga[)‘&(z =l§ pové * (BS)
The following formulas are also useful:
%eﬂvaﬁ(Tﬁp ka - Tap kﬁ )kp = - (Tv(l k[t - Tya kv )ka
+ 7.k, Ky, (B6)

%6;;va/3(§4/3y6 ka - §4ay§ kB )k'yk5
= - (§4v75 ky - §4yy5kv))‘yk6 - §4}L7Vk‘}’k5k(s' (B7)
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proposed superfield formulation of BRS (Becchi—-Ronet-Stora) and anti-BRS transformations.
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1. INTRODUCTION

Since the discovery of the Becchi-Ronet-Stora (BRS)
transformations as symmetry transformations of a quan-
tized gauge theory, it was clear that they could be interpreted
somehow as supersymmetric transformations. In Ref. 1 a
new superfield formulation of a quantized gauge theory has
been proposed. It exploits both BRS and anti-BRS symme-
try? and it looks compact and effective in supplying a pre-
scription for constructing the most general Lagrangian. The
key to the superfield construction is the transformation

4,dx"—U " 'x,0,0)4 ,(x)dx"U (x,6,0)

+ U~ 'x,6,0)dU (x,6,0), (1.1)
where 8 and § are “anticommuting variables” (6 * = 62 =0,
0= —09)andd = Ej—”-dx# + %d9+ %dé.
Moreover
U(x,6,0) ~ _

= exp{dalx) + O¢(x) + 66 [ B (x) + Y(cx)clx) + dx)elx))]}
=1+ 6gx) + bclx) + 66 [B {x) + ¢lx)dix)]. (1.2)

Underlined quantities are matrix-valued fields:

A, (x) =4[ (x)7, etc., where 7(i = 1,...,N) are the gener-
ators of the Lie algebra 4 of some classical Lie group G;
A, (x) are the gauge potentials, ¢/(x) and &(x) the Faddeev—
Popov (FP) fields, and B ‘(x) the auxiliary fields. The trans-
formation (1.1) generates a one-form

¢ ,.(x.8,0)dx* + 7(x,6,6)df + 7(x,0,0)d6 (1.3)

in the superspace 2 with local coordinates ({x,, } ,0,8). From
the explicit expression of the superfields ¢ ,, 7, and 7, the
BRS and anti-BRS transformations appear as translations in
6 and 6, respectively.

In Ref. 3 a geometrical interpretation of the transfor-
mation (1.1) has been proposed, resorting to an unusual geo-
metrical structure. Here we present a different and very sim-
ple geometrical interpretation. Equation (1.1) is understood
just as it looks: a gauge transformation on a connection form
defined in the superspace 2. A difficulty arises when we look
for the structure group of the principal fiber bundle whose
base space should be this superspace. It cannot be G itself,
because U (x,0,6 }is never a pure real (complex) matrix when
or 8 are different from zero.

The clue for solving this difficulty is provided by Rog-
ers’ supermanifold theory*S (in this context see also Ref. 6).
In Rogers’ approach supermanifolds are spaces locally ho-
meomorphic to “generalized Euclidean spaces,” called
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Grassmann algebras, whose coordinates are both odd Grass-
mann variables (like § and 8 ) and even Grassmann variables
replacing the usual real coordinates. In our case if we inter-
pret {x,, } and the group parameters in G as even Grassmann
variables, the above difficulty disappears. Then the underly-
ing geometrical structure is a (super) principal fiber bundle
whose base space is a supermanifold which, according to
Rogers’ approach, supplies a suitable refined version of the
superspace X, and whose structure group is the Grassmann
enlargement of G.

This interpretation automatically accounts for the anti-
commutativity of the fields ¢’(x) and &(x). It is interesting to
observe that replacing real variables by even Grassmann var-
iables, which looks at first sight like a useless complication
from a practical point of view, allows us to set Eq. (1.1) and
the BRS transformations in a very simple geometrical
framework.

The paper is organized as follows. In Sec. 2 we derive
the necessary mathematical results. Our approach is to link
tightly real or complex geometrical objects (such as mani-
folds, groups,...} to their Grassmann enlargements, in such a
way that operations defined on them (such as maps, pro-
ducts,...) work in exactly parallel ways. Our approach is con-
structive: for every real or complex geometrical structure we
show that there is a Grassmann enlargement and build it. So
the result need not be unique. In Sec. 3 we explain in detail
the geometrical interpretation of Eq. (1.1). In Sec. 4 we deal
with the analogous problem for the matter fields.

2. THE G FORMALISM

In this section we derive some results about G © mani-
folds not contained in Ref. 4. First we recall a few fundamen-
tal concepts about the G * formalism. For conventions and
proofs see Ref. 4.

Consider a Grassmann algebra B, over R “.” We shall
choose L finite, until Sec. 2E. In Sec. 2F we shall turn to
L = « (see also Sec. 3). B, can be given a Banach space
topology. Consider B and B, the even and odd part of
B, , respectively. A parameter or variable taking its values in
B Y (B'") will be called an even (0odd) Grassmann parameter
or variable, Now let us construct the Banach space

B =BOX..XBYXBP X XBY.
m times n times

The “body” map €:B 7*"—R ™ associates to each
(m + n)-tuple (X,,..., X, P1,-..s ¥, JEB ["" the m-tuple
(X1, X5,... X, ), Wwhere x; is the (real) coefficient of the trivial

© 1982 American Institute of Physics 839



Grassmann generator in x;. The “soul map” is defined by

s = id — €. The definition of a G © function is the fundamen-
tal definition in Ref. 4. G ~ differentiability is more restric-
tive that C = differentiability in the usual Banach sense and
assures the existence and unicity of the Grassmann continu-
ation for C * functions.

Let U be an open set in B 7" and ¥ be open in R " with
V = €(U). The Z-continuation® or Grassmann continuation
of a function feC = (V,B, ) is defined by

2 )X oKy Piserss V)

L 1
k= .";km =0 kl'km '
X [Fen Gt 100yt s(F) o 5(%,0 ), 2.1)
where, according to our definitions, s(x;) = X, — &(x;)

=X; — x,;. Then z( f)eG *(U,B, ). It is evident that the con-

tinuation {2.1) involves only even variables. Let £, g €
C =(V,B_), then it is easy to show that

2(fg)=2(f) 2 g). (2.2)
Let f: open set in R "—B %°, be represented by the set of C =
functions { f;(x;,...,x,, )i = 1,...,m}. Define z{f) as the set of
functions {z{ f;)]. Now let f:U—V, where Uis open in R ™
and VisopeninR ",and g:¥V'—B %°, where ¥’ C ¥, and both
fand g are C * functions. Then

z(gof) = zlg)ez(f). (2.3)

A. G * Manifolds

A G *{m,n) manifold Y, is a Hausdorff space locally
homeomorphic to B 7". The exact definition® parallels the
usual C * manifold definition, with C * functions replaced
by G = ones. Precisely if { U, } is an open covering of ¥, and
{4, :U,— open subset of B ;"",aeA } is the relative family of
homeomorphisms, then ¢, °¢,; ' ,(U, U, 4, (U,nTy)
must be a G ~ function for any a,5e4.

Given a G ~(m,n) manifold Y, consider the equivalence
relation among points of Y,:x ~j if and only if for some
aed,e (¥, (%)) = e, (7). It has been shown in Ref. 4 that the
corresponding quotient space is an m-dimensional C
manifold. Let us call the quotient map, or ““body” map, @,.

A problem we are faced with, in this paper, is whether,
given an m-dimensional C ® manifold M, we are able to de-
finea G * (m,n) manifold M g,, such that the quotient mani-
fold just defined is exactly M. Let us first consider the prob-
lem of how to define a G *(m,0) manifold M;,, starting with
an m manifold M. A simple solution is the following one.

Suppose { U,,.¢¥, |aed } is an atlas for M. For every aed
consider the subset U,, of the Cartesian product U, X B ;"°
defined by

U, = {x.%):xeU, %eB ;" and €(x) =

a? w (x)} (24)
and define ¥, :(7,_,~>B "0 by o, (x,%) = X for (x,x)elz,. It is

easy to see that ¢, is a bijection and the image of ¢, is an
open subset of B ;. So we can transfer the topology of this
open subset into U in such a way that ¢ is a
homeomorphism.

Now construct the disjoint union = u U,. It is of
acA
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course a Hausdorff space. Define a relation in 91 by
(x,%) ~ (x", % )iff(x, )€U, ,(x',X)e UB and

x=x, I =20, "\ (2.5)

Due to the property (2.3) and to the fact that z(y, 09, ')
is one-to-one the relation (2.5) is an equivalence relation.
Moreover it matches the overlapping of the U,,’s.

Then consider the space M ;) equal to the space Mmod-
ulo the above equilvalence relation. Mg, is a Hausdorff
space as the canonical projection onto it is open and the
relation (2.5)is closed ingn X9n.® The ¢, ’s provide M, with
a G * differentiable structure, so that M, isa G * (m,0)
manifold.

If we consider the “body” map @,,, we find that the
image of M|, can be identified with M. Locally, @,, g (x, X)

= x for (x, X)U,. We find straightforwardly that

Ve | = Yo o€ (2.6)
for ey, (U,).
From now on M, will be called the Grassmann® en-
largement of M. It is evident that if M =R ™, M, = B 7.
Now let M (N ) be a C * m(n) manifold,
(U, ¢, |laed }({ V', p'w |,@'€Ad’]) an atlas for M (N) and
_lg,(N(G ) the relatlve enlargement defined by the atlas
(U, ¥, aed }({V, p. a'€d’}). Letg: M—Nbea C * map.
For any couple (U,,V,, ) such that g(U, )NV, #¢ define
¢_(x(1' = p_(x' loz(pa' O¢O¢(t l)ol/_ju 4 (2‘7)
which is defined in the set of pairs (x, x)eU, with
xeU,n¢ 'V, ). The set of ... defines a unique function
¢:M‘(,,~>N((,,, which we call the z extension of ,2(¢ ).
Indeed, for example, if (x,X)~ (x,X"), where (x,X)eU.,
(x,x')eU,, and xeU,ng ~ '(V,.), then

Baa %K) = (P 02 P 0B '1o% )%, 5)
=(pa ‘ozl paroo¥a NF)
= (P 02 pur °F°Ya Wl oY X)) (2.8)
= (Pa 'ozlpa o¢°Ys X'
= (Pa 02 por 09°Us oY) T} = Pp(x.X),
where €(X) = ¥, (x) and €(X') = ¥;3(x) due to Eq. (2.3).

An analogous matching property holds in the image space.
For 1f¢aa(x x) = (y, ) and ¢B L x.X) = (', ¥) for (x,%el,,
where (y,7)eV,. and (', 7)€ V5., then in the same way one
shows that y =y’ and J = z(p,z %p ')(7). Likewise one can
show that, given a C ® map ¢:M—Nanda C * map y:N—R,
where R is an r-dimensional C * manifold, and considering
the z extensions z(@ ):M,;,—N, and z (v ):Ng,—R s, the
composition property

z(yod) = z(xlozlé ), (2.9)

holds, where essential use has been made of Eq. (2.3). Wecan
also easily show that

Zidy ) = (2.10)

1de ,

where id,,(id,,, ) is the identify function on M (M ). Now
let $:M—Nbe a C ~ diffeomorphism, then z(¢ ):M,—N,, is

a G ~ diffeomorphism. Indeed z(¢ ) and z(¢ ~') are G * maps
and, by Egs. (2.3) and (2.10), we have
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2(¢ =)oz ) = iy g1, etC. (2.11)

If pry;:M X N—M (N ) is the projection map onto the first
(second) factor, then

2lpryy) = prygy:Mie XN —Mg (Ng)) (2.12)
If f,:M—N is the constant map f,(x) = y, for xeM and
vV, CN, where (V. ,p, ) is a chart in N, then z (f;) is the
constant map from M, onto the point (o0, (v)1)€ V.,
where 1 is the trivial generator in B, .

Finally let @,,:M ;\—M and @ :N; —N be the gen-
eralized “body” maps defined above. Then if y:M—N is any
C ~ map,

S ozly) = xodu. (2.13)
Therefore if VC N is any open set, and we define: V|;;, as
& » '(V), we have

ey =200)" " Vig))- (2.14)
Indeed (y~ |(V))|G; = {EEM<G):(XO¢|M))(E)€V)} and
2(x)” (Vig,) = (XeM ¢, :(dyoz(x))iX)eV }, where X stands
here for a generic point in Mg,

B. G~ groups

Let G be a C = Lie group. Consider the enlargement
G ;) of the manifold G, defined in the previous subsection.
The question is whether G g, isitselfa group whose structure
is tightly related to the old one. To this end consider the C *
product function 4:G X G—G and the C * inverse function
i:G—G and take their G * z continuation
zZu):G g, X G,g,—Gs, and z(i):G ;,—Gs, as defined in Sec.
2A. Then we have associativity,

Zp)z(u)(@b ),0) = 2( p)e(z u) Xidg,, )(@,6,E,)

= z{ polu Xid4))@,b,8)
= z( polidg Xp))@,b,0) = z( u)(@, z(u)(b,0))
(2.15)

by (2.9) and (2.10), for every triple E,I)_,E,GG(G,.

If e is the unit element in Gand { U, ¢, } isachartin G
such that eU,,, then given any element beG g,

2 )17, x 6, ((€.¥ale)1),b) = 2u)o(z( £,) X idg,, Na@,0),

(2.16)

where a is an element of G;,. Here symbols and properties
established below, Eq. (2.12), have been used. Therefore the
element €€G g, which in the chart U, has the representation
(e;¥,(e)1)eU,, is the unit element in G ;,. Of course there is

no loss of generality if we choose for a particular a,,, (¢) = 0.
Finally we also have

z(u)@z(ifa))
= z{ u)o(idg, , Xz(i))oz(4 )(@) (2.17)

= z(uolidg Xi)ed )(@) = 2(f.)@) = & = z{ u)(z(i)}(a).a),

whered:G—G X Gisthefunction 4 (a) = (a,a). Therefore z(i)
istheinverse functionin G, . In conclusion we may call G,
a G ™ Lie group.

Now let G be a classical matrix Lie group. G may be
considered as a submanifold of R ™ (if the matrices are n X n),
specified by a set of & (k < n?) polynomial equations:
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8la;) =0, i=1,..k, (2.18)
where @, are the matrix elements. It is natural to ask if the

group G obtained by thinking of a;, as Grassmann variables
a, and by imposing the constraint equations

zg)ay) =0, i=1,..k (2.19)
is the same as the group G;;, defined above. The answer is
yes. Indeed the matrix product and inverse function in G are
exactly the z continuations of the corresponding functions in
G, as the latters are rational functions. And this is just the
reason why G specified by the conditions (2.19) is a group.
We should also verify that the topological and differential
structure are the same. This is done in Appendix A.

We remark that our definition of a Grassmann Lie
group is based on G * product and inverse functions, where-
asin Ref. 5 a superanalytic product function is used to define
a super-Lie group. However, if we start with an analytic Lie
group G we end up with a Grassmann analytic product func-
tion. Indeed the z continuation of an analytic function is
trivially a Grassmann analytic function. See Sec. 2F for fur-
ther comments on this point.

C. Principal fiber bundle

Let P{M,G ) be a principal fiber bundle with structure
group G. Let m:P—M be the projection. Let { U, | be a cover-
ing of M formed by trivializing sets. That is, there exist dif-
feomorphisms 4,,:U, X G—7~'(U,) with the property

pb=1(p,b) = h,(x,alb = h,(x,ab) (2.20)

for every beG, provided that per~ (U, ). Here 7 is the prod-
uct function 7:P X G—P.

We want to transform P (M,G ) into a similar mathemat-
ical object in which manifolds are replaced by G * manifolds
and C * maps by G * functions. To this end we enlarge P, M,
and G asin Sec. 2A and get P ;| ,M ;,, and G;,. As shown in
the preceding subsection G, isa G Lie group. We extend
the product function 7:P X G—G by means of
Z(1):P ) X Gig,—P,,. We define also the continuation
z(m):P,g,—M;,. Then by (2.9)

z(mjoz(r) ( p,a) = z(m) { p) (2.21)
for peP;, and aeGg;,.

Let us define the continuations

2lh, ): Uy, X Ggy—7 '(Uy)g,- They are G = diffeomor-
phisms by Eq. (2.11}. Moreover by (2.12)

priczth ) =zlprioh ;) = z(m)| . o, - (2.22)

By Eq. (2.14) we know that 7~ (U, )¢, = z(7~ ')(U(,[m). It
follows that z(7) is onto, and therefore it is a G > fibration.
Continuing (2.20) we get,

272 0,016, oD ) = 2lT)0l2lh, ) X id g, (%,30)

= z{h,, (%,2(u)@,b ). (2.23)

We see that the action of the group G;, on P, is free.
Therefore all conditions are satisfied and we may call
P\ (M,,G ) aG = principal fiber bundle.

D. Vector fields and forms

A common attitude in dealing with superspace is not to
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make a distinction between real coordinates in space-time
and corresponding coordinates in the superspace. Reph-
rased in the language of G * manifolds, we should be able to
deal interchangeably with real coordinates and even Grass-
mann coordinates. We have seen that, with respect to en-
larged manifolds M, this makes sense as for the differential
structure. But of course we must verify this point also for
vector fields and forms. Since M|;, has a far richer structure
than M, some attention has to be paid to the correspondence
between objects on M and objectson M ;,. In Ref. 4, given an
open set Uin a G * supermanifold Y, the graded commuta-
tive algebra G *(U), of G ~ functions: U—B, is defined. In
analogy with the C * case, one can define vector fields: they
form a graded Lie left B, module D '(U) and in local coordi-
nates they have an expression which exactly parallels the
usual one in the C * case. Those considerations are easily
extended to the dual D (U) of D '(U), i.e., the module of
forms.

When the G * manifold is an M., the grading is trivial
and the procedure is even easier. Let [ U, ¥, } be a chart in
M, and let {X,,...,x,, } be a system of Grassmann coordi-
nates in B 7°. Let (U,,, 1, ) be the corresponding chart in M
and {x,,...x,, | the corresponding system of coordinates in
R ™. We denote by X, the vector field which in this chart
corresponds to the partial derivatives 8/9x;. If feG = (U, ) we
write z(X;) to mean the vector fields defined by
2X,) f= (—-(—z—folza_ ‘)oaz,,, i=1,.,m, (2.24)

Jx,
where /%, is the ith G derivative in B 7° [remember that if
feG >(U,), then fop - ' is G =].* It is interesting to observe
that if feC =(U,), then

2(X;)zlf) = 2(X.f). (2.25)

To every vector field X, which in the chart (U, , ¢,) has the
expression

X= i;iXi

i=1
with £, eC =(U, ), we associate the vector field in v,

"

AX)= 3 22X,

i=1

(2.26)

Conversely as {z(X,)} form a basis of the module { D /( U)}.}
we may write an arbitrary vector field XeD (U, ) as

X= Eifiz(X i),
where £,6G ~(U,).

If U is an open set not coinciding with a chart, and
XeD '(U), we define z(X' ) by (2.26) in every chart {U,, ¥, }
such that UnU,, #¢. This definition is correct provided that
the coefficients z(¢;) satisfy the usual transformation proper-
ty when we pass from one chart to another. This is an easy
consequence of the transformation properties of the coeffi-
cients ;. Let {w'eD,(U)} form a basis dual to { X, ]. In local
coordinates {X,} they are equal to the forms dx;. Therefore

(2.27)

2{)2(X;) = z(0'(X,)) = §. (2.28)
Then every form @eD,(T) can be expressed locally as
T = 3, 72a'); (2.29)
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therefore to every form weD (U ) which in the chart (U, ¢,,)
has the expression @ = £,7,0', we associate in U ., the form

(2.30)

As a consequence of all these definitions we may express very
simply the module corresponding to the Lie algebra ¥ of G.
If 4,(i = 1,...,N) is a basis for the Lie algebra & of G, then
z{4,) form a basis for the B " module ¥ ;, of G ;,. The struc-
ture constants are the same.

Now let P{M,G ) be a principal fiber bundle (pfb) and
P, (M ,G)) the corresponding G = pfb. Suppose w is as
connection formin P (M,G ), then Eq. (2.30) defines a form in
P;,. The question is whether z(w) is a connection form for
P, (Mg, Gg,). The answer is affirmative but the rather
lengthy proof is deferred to Appendix B.

2w) = 3,209, )2

E. Odd Grassmann variables supermanifolds

Up to now we have been solving the problem of how to
define a G *(m,0) manifold M, starting with an m mani-
fold M. As explained in the Introduction, we must deal with
a G *(m,2) manifold M. Locally it looks like B 7* with two
odd Grassmann variables & and 6. As there is no particular
topological requirement with respect to these two variables,
we choose the simplest solution and define
M, = M, X B}* Then the “body” may ®,:M,—M is
the composite map @,, o/, where j:M;,—M ., is the projec-
tion onto the first factor. Unlike @,,, whichis a C = function
butnota G ~ one,jis G ~. Therefore the problem of defining,
for example, a new form in Mg, starting with a form in M,
is easily solved by the inducing procedure.

F. Analytic Grassmann (G*) manifolds

As we shall see in the next section, in the specific case
dealt with in this paper, as well as in other instances, a Grass-
mann algebra B, , with L finite, is not enough to guarantee a
suitable differentiable structure. For many purposes we need
an infinite L. A Grassmann algebra B, with L = « hasbeen
studied in Ref. 4. Due to Proposition (3.1) (iii) of Ref. 6 we
can easily define a z continuation of a function f:V—B, ,
where Vis an open set in R ™, by means of Eq. (2.1) with
L = «, provided that fis analytic in V. Then z(f) is Grass-
mann analytic (G “) in the domain € ~ '(¥), i.e., it can be ex-
pressed as the sum of an absolutely convergent power series
in a neighborhood of any point of € ~ (V). We call z(f) the
analytic z continuation of /. Equations (2.2) and (2.3) still
hold.

Therefore we can repeat step by step what we have done
from Secs. 2A-2D simply by replacing C * functions by ana-
lytic functions, G * manifolds by G “ manifolds, and so on. It
should be remarked that this implies we can get an analytic
Grassmann enlargement of a manifold M only if M is itself
analytic.

As a final remark we observe that it is not necessary to
stick to the particular algebra B, proposed in Ref. 4. Indeed
in Ref. 6 a generalization of B, has been proposed, which
though preserving all the results of Ref. 4 assumes less strin-
gent requirements. For example, the number of odd gener-
ators needs not be discrete. Of course we could as well have
adopted the Banach-Grassmann algebras of Ref. 6.
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3. THE GEOMETRICAL CONSTRUCTION

After the mathematical preliminaries of the previous
section, we define a suitable geometrical framework in which
the transformation (1.1) can be correctly interpreted as a
gauge transformation. We start of course with a principal
fiber bundle P(M,G ), in which the potentials 4, (x) have a
well established geometrical meaning and determine a con-
nection form in P. M is the space-time manifold and G is a
classical compact matrix Lie group, say SU(V ).

We make a first step toward the super-principal fiber
bundle we need, shifting from the real space-time coordi-
nates {x, | in M to even Grassmann variables and from real
parameters in the group G to even Grassmann parameters.
There is a well defined way of doing it. As we have shown in
Sec. 2, we can enlarge any m manifold M toa G * or G “(m,0)
manifold M, in which the local coordinates are m even
Grassmann coordinates. In the same way we can enlarge the
group G and get a corresponding G “ Lie group G i, (where
means either « or ). In the particular case in which G is a
matrix group, this enlargement amounts to replacing the
real matrix elements by even Grassmann parameters.

Using these new objects we can define a G “ principal
fiber bundle, in which manifolds are replaced by G “ mani-
folds, C “ maps by G “ ones, as is shown in Sec. 2C. In the
present case we get a G “ principal fiber bundle
P;\(Mg,, G)). Asis shown in Sec. 2D, though P, has a
richer structure than P, we have a well defined prescription
for passing from a connection w in P (M,G ) to a connection
Z(w) in Pg,.

Equation (1.1) requires all relevant objects to be defined
with respect to a base manifold in which the local coordi-
nates are the usual space-time coordinates {x,, } plus two
anticommuting variables & and 8. The simplest way of doing
this is to choose the supermanifold M5, = M ;, X B %, so
that {x, } are replaced by even Grassmann variables {X,, |,
and 6 and 8 are to be interpreted as odd Grassmann varia-
bles. We can go back from Mg, to Mg, by a simple projec-
tion j, which is of course a G “ map. For example, when
M=R",Ms, =B\

Now it is straightforward to construct a super principal
fiber bundle Py, (M5, G ;) by the usual induction proce-
dure.'® Let P, coincide with the subset of M5, X P, con-
sisting of ordered pairs (7, p) such that j{ y) = z{m)( p) for ev-
ery yeM s, and peP ), where z{r) is the fibration map in
Py(M ), G, The group action is defined by ( 7, p)a

= (y, pa) for aeG;, and ( y,p)eP,s, and the fibration map is
defined by 7{ y,p) = y. Since all the maps involved are G 7,
Ps)(Ms,,G, ) is a G super prAincipal fiber bundle.

. The map induces a map j:P5)—P, defined by
JU(7:P)) = pfor  7,p)ePs,. Then to each connection & in P,
there corresponds a unique connection @’ in Ps, given by the
pullback of @ by :

@ =j*a. (3.1)
If & is a local cross section in P, then

a'(y) = (y.a(x)), (3.2)
where j(j) = XeM ;) is a local cross section in P, and

joo' = o9j. Itis easy to verify that 5 *»" = j*o*@ has a trivial
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dependence on 6 and 6 in the corresponding chart. Indeed
we expect by analogy with other papers'' that a dependence
on @ and @ is going to appear as a result of a gauge transfor-
mation, by which we mean an automorphism y of P, that
is a diffeomorphism y:Ps,—Ps, such that

¥ (P'a) = ylp'la,YacG,;, and p'ePy, . It can be represented
by a function ¥:P 3, —G;,, with y(p") = p’y(p’). As a conse-
quence of an automorphism operation

T, =y*& =ad(y” Y@ +y 'dy. (3.3)
Undergoing the gauge transformation represented by ¥, @'
acquires an explicit 8 and @ dependence, as we shall see in
detail in a moment.

Let Ube a trivializing opensetin M, h: U X G—7 " '(U)
the trivializing diffeomorphism and 4,, (x)dx" a local one-
form in U defining a connection form w in 7~ '(U). It is well
known that if certain compatibility conditions in the passage
from a trivializing set to another are satisfied, w is globally
defined. Let o{x) = A (x,e),xeU,e the identity in G, be the pre-
ferred cross section in U. Consider z(w), and @ obtained by
z(ew) through the pullback (3.1), and &' obtained by z(o)
through Eq. (3.2) and defined in U,;, X B9*. Then

F*T = A, Rz, (3.4)

where {X* | is a coordinate system in Uy, and the transfor-
mation (3.3) in local coordinates is given by

4, (®dz
—g~1(%,0,0)4,, (X)dxg(%.0,0) + g (.0, )dg(%,6,0),
(3.5)
where g = y°o’ and
9 3 3 ,z
d= —2—d¥ + —db + —db.
O TR

We expand g(x,6,0 ) in power series of 6 and 8 *:
8(%,6,0) = go(%) + 68,(%) + 0g,(%) + 66g;(%). (3.6)
golX) represents a usual gauge transformation and it is

irrelevant here. Then let us consider
h(x,0,0) = g; (¥)g(x,0,0) and rewrite it as

h(%,6,0) = 1+ 62%) + 6c(%) + 60 [B (%) + c(X)a7)]

= exp{fc(X) + 68%) + 66
X [B (%) + Yc(X)dX) + dX)elx)]]- (3.7)

The argument of the exponential map belongs to the Lie
module & ¢, of the Grassmann Lie group Gg,. Therefore
¢(%) = c'(x)z(r'),g%) = T(X)z(7),B (%) = B '(X)z(r), where
(i = 1,...,N ) are the generators of the Lie algebra & of G.
An important fact is that, as 6 and 8¢’ are even Grassmann
numbers, the functions ¢/(X) and &{x) must take their valuesin
the odd part B! of B, , so that they have an anticommuting
character.

Therefore we have succeeded in recovering formula
(1.1) as a real gauge transformation in the principal fiber
bundle P (M s,,G), provided that we interpret {x, } as
even Grassmann variables 4 ;, (x) and B (x) as even Grass-
mann fields, and 7 as the basis of the Grassmann extension
of the Lie algebra.

Now we are able to decide what kind of Grassmann
algebra B, is the most appropriate in our case. In general we
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have to deal with products of fields containing an arbitrary
number of FP fields. As the latters are B -valued, the pro-
ducts vanish from a certain order on, if L is finite. So we must
choose L infinite; but, in this case, the entire differential
structure must be G ¢ (see Sec. 2F).

A final remark concerns the curvature 2 of the connec-
tion @ in Eq. (3.4) and ﬁ corresponding to its gauge trans-
formed @), . It is obvious that &*{2"' has no dependence on ¢
and 6. From the form of the transformation (3.5) it is clear
that 7*2’ » has a nontrivial dependence on 8 and 8, but it is
zero in the 8 and @ direction. '

4. MATTER FIELDS

In this section we study the geometrical meaning of the
matter fields in the framework of the super principal fiber
bundle P .

Itis well known that in connection with a principal fiber
bundle P(M,G ), a matter field ¥ = {¢,|i = 1,...,5], trans-
forming according to a finite dimensional representation r of
G, can be regarded as a suitable function /P—F, where Fis
the representation space. The map /satisfies the relation

Alpa)=ra=")/(p) (4.1)
for every peP, aeG. The relation between and ¢/ is given by
a cross section o [let P(M,G ) be trivial so that o is a global
cross section):

= /o0. 4.2)
As a consequence of Eqs. (4.1) and (4.2} a gauge transforma-

tion ¥ (see above for conventions) transforms ¢ in the follow-
ing way:

Yix)—r g~ ' (x)ix), (4.3)
where g = yoo0.

Now consider the space Fg, = B ® F. F, is a free
B module. Indeed if {X;|i = 1,...,s} is a base for F,
{1eX;|i = 1,...,s} is a base for F;,. Consider the Grass-
mann Lie group GL (Fg,) (see Sec. 2B). Then a representa-
tion :G—GL(F) can be continued to z(r):G\;, >GL(Fs,)-
Moreover, let us continue /'to z(/J:P,;,—G - Then Egs.
(4.1)~4.3) hold for the z-continued quantities with p,a,x re-
placed by pePys), a€Gg,), and XxeM ), respectively. Now de-
fine /":P5)—F, by

7' =24, (44)
then /'05 ' = z()oj = ¢, if 7' is the same as in Eq. (3.4)._
Therefore the new field has trivial dependence on € and 6.
But as a consequence of a gauge transformation we obtain

P—zlr)h (6.0 D=1, (%.6.0), (4.5)
where 4 (x,8,0 ) is given by Eq. (3.7). The transformation (4.5)
generates the superfield gbr Again, a translation in 8 and 6

coordinates generates the BRS and anti-BRS transforma-
tions of the matter field.'?
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APPENDIX A

Let G be the matrix group introduced in Sec. 2B. Asitis
a submanifold of some R ™ we can find'* a covering
{U,,aeAd } of G and a set of C ~ functions F,:V,—R 9,
where ¢ = dim Gand ¥, CR " is an open set containing U,,,
with the following property: the restrictions ¢, = £, are
such that { U, ¥, ,aed } is an atlas for G.

This is based on the implicit function theorem. By re-
peating a parallel argument for z continuations, we reach the
same conclusion when we consider in the space B the
subset satisfying the constraint equations (2. 19)——let us callit
G. There will be an atlas (U, .1, ,aed }, for G, where

lza = z(fa)\g"‘

In other words if 2 € U, we shall write

¢ =vala)=F,(€), (A1)
whereeR %, £ = {a,} isthe pointinR ™ representing a, that

is g,(¢) = 0fori=1,...k. Likewise if deU,,, we write

£ = va(d) =2(F,)E), (A2)
where £eB 4°,£ is the point in B 7 ° satisfying z(g, (£ ) = O for
i=1,..k.

Let us identify a point an toapointd = ((£,8 U, if
and only if

§=2F,)€) =1, (A3)
For this identification to be correct we must show that if
£’ = z{F,)(€) for some Bed, then (¢, ;‘ J~(£ L"), see Sec. 2A.
Indeed ¢, (¢ ) = €& ) = €(z(F, )€ ) = F, (£ ) and likewise

Ypll') = Fylg ), so that § = §

Moreover ' = z(F;oF ‘)(g) = z(¢zo0; ")), there-
fore (£,£)~(E',£'). The converse is also true. There is a bijec-
tion between G ;, and G which is trivially a
diffeomorphism.

APPENDIX B

Letw beaconnectionformin P (M,G ). For notations we
refer to Sec. 2. If { 4, } is a basis for the Lie algebra ¥ of G,
can be written as

w=Ywd,. {B1)
We define z{w) by
z(w) = Zz(wi)z(Ai)’ (B2)

where z(w;) have been defined in Sec. 2D and z(4,) = z(A )e).
A is the left invariant vector field such that 4,(e) =

where e is the identity in G, and e is the identity in G'G Itis
easy to show that if a{z ), with a(0) = e, is the generating curve
of A%, then z(a)(¢ ) is the generating curve of z(4 ), t€B . A
generic element 4 of the Lie module & ) of G, has the
form

A=73cz4,),
The vertical vector field .:1\ ; is defined by

Ap =2 Zrrpae)), feCP) (B4)

where ¢,eB . (B3)
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The vertical vector field in P;, corresponding to z{4,) is giv-

A

en by z{4,). Indeed,
A PIF = dit.f‘(zm(ﬁ,z(a")(r‘ W=z4)pFf  (BS)

because if the one-parameter group of transformations'
7(p,a'(t)) generates 4;, the one-parameter group
z(r)(ﬁﬁ(a")(f )) generates z{4,). Therefore any vertical vector
field A derived from a unique element 4e ¥ ;,, will have the
form

A=Yz44,) (B6)
Now it is elementary to see that

do)d) = 4. (B7)
Moreover

(R *z@)4) = ad; .4, (BS)

where R;:p—7{p,a) for aeG;, and peP;,. And this is
enough to conclude that

R *z(w) = ad;. . z{w). (B9)
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Therefore z(w) is a G = connection in P, (Mg, G, )-
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We analyze the structure of the higher Legendre transforms I""{4 }(r> 1) of the generating
functional G of the connected Green’s functions G, in Euclidean boson field theories. In
addition to the vertex functions, I" " generates a variety of objects of interest for their -
irreducibility in certain channels, e.g., r-irreducible expectations, rth order Bethe—Salpeter
kernels, and r-field projectors. Qur analysis is independent of perturbation theory, our definition
of r-irreducibility being based on Spencer’s idea of #-lines. We derive formulas for 371" “'{ 4;t } (in
terms of either 85 I""'{ 4;¢ } or the G, ’s) to be used as input in the proofs of r-irreducibility. For
the case of the weakly coupled P (¢ ), model, we establish the existence of the moments

87 "{0;¢ } and their regularity in 7.
PACS numbers: 11.10.St, 02.30. + g,05.20. —y

|. INTRODUCTION

This is the third in a series of papers dealing with higher
Legendre transforms'? in Euclidean quantum field theory.
In our first two papers®* (which we shall refer to as I and II),
we studied the first two Legendre transforms I"'V) (N = 1,2),
giving elementary proofs of their irreducibility properties
and establishing their connection with N-irreducible expec-
tations and with (generalized) Bethe-Salpeter (BS) kernels.
In the present paper we analyze the general structure of IV
for N> 1. The structural results we obtain prepare us for the
proofs® of various irreducibility properties of "V when
N> 2 and they exhibit I" ™’ as the generator of N-irreducible
expectations, N th order BS kernels, “N-particle projec-
tors”,... . It is, of course, well known'® that I"'V) generates
vertex functions 7"V that are N-irreducible (N<4), but what
we wish to call attention to here is the remarkable role I~V
plays in organizing together all of these other field-theoretic
objects which are of interest for their N-irreducibility in cer-
tain “channels”.

To define ") in a Euclidean boson theory whose ex-
pectation is denoted (-), we first introduce source terms of
order N,

Uy =3 I4'=18', (L)

where J = (J,, Jy,..., Jy), JoeC, and, for n>1, J,
=J,(x},...,x,) is a symmetric function of n variables x,eR®.
[We use the summation-integration convention that repeat-
ed {but possibly suppressed!) variables are summed or inte-
grated over; e.g., J, ¢ > = [ dx, dx, Jy(x,, x,) § (x,) & (x,).]
Then

Z{J}=(eVVly —1 (1.2)

is the generator of the Schwinger functions .S,
=(6Z /8J,){0}. If we transform J,,,...,J, (r<N) to
*“Schwinger variables”

*'Research supported by the Natural Sciences and Engineering Research
Council of Canada.
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AT} (xpexs) =6,

e Z 4} (1.3)
where a runs from O to 7, then the rth partial Schwinger

Legendre transform SI'""™) of Z is defined by
SPUNAS, AS T edy ) =Z (T}~ A5,

(1.4)

where, on the right side of {1.4), J,,

=J,{45,..,A5J, . \,..Jn] is obtained by inverting (1.3).
When all the J;’s are transformed (i.e., » = N ) we obtain the
(complete) N th Schwinger Legendre transform SI''"){4 5}
=S W/M){45]. It is not hard to check? that SI" "’ can be
defined iteratively in the sense that SI"" + V) is the Le-
gendre transform of *I" /") with respect to the variable
J. .. As an example, it is trivial to compute that

N
SPONAS T Tl =43 ln(exp(z J; ¢i>>

i=1

FAS1—InAS)—1.
When 4 § takes its “physical value” S, = 1,

N, |
SPONL, T Ty} = ln<exp S ¢ )

i=1

=G™ (Jp Iy}, (1.5)

where G = GV is the generator of (generalized) connected
Green’s functions. In other words, G is the Oth partial Le-
gendre transform of Z. For most of this paper we shall sup-
press this Oth iteration of the transform and define S/
directly as the transform of G {J | = G {J,,....J }.

While °T""/{4 *} is the simplest transform to describe
and while it will prove to be very useful for computations,
there is a more physically meaningful transform "' with
better irreducibility properties. I"”) can be obtained from
°T" ™) by making a change of variables to connected varia-
bles,"” 4 *—A. Alternatively, we can define "™’ directly as
the transform of the functional G {J } of (1.5): Let

1<IKN,
1<i<N, (1.6)

4,{J} =8, G{J} -8, G{0},
EG,{J} _A?’
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where 47 = G,{0} = &) G (0}. The (complete)N th Le-
gendre transform of G is then

r'ia} =G4} -G, {J{4}}-Ji{4}, (17)

whereJ {4 }istheinverseof themap 4 {J } of(1.6). Similarly
we can define the rth partial Legendre transform
r""{4,..,4,,J,, ,.,Jy}bytransformingonly J,,...,./, .

There is yet a third transform *I""/{4 } which is de-
fined as in {1.6)-(1.7) but with G replaced by G ¥, where the
W means that the sources are physically Wick ordered (see
Sec. IT). ¥I"™) turns out to be more suitable for rigorous
mathematical purposes. In Sec. II we establish the (simple)
relationships among 5I,I" and "T; in particular, we show
that " and "I are the same functional. (Note that we shall
often suppress the superscript N.)

The reader should note that the subtraction of 4 ° in
(1.6) does not occur in the definitions of the Legendre trans-
form in Refs. 1 and 6. Because we make this subtraction, the
“physical value” of 4 (i.e., the value corresponding to J = 0)
is4 = 0, and so it is natural to make power series expansions
inJ or 4 about the origin. In addition, the subtractions intro-
duce a small but {from the point of view of spectral analysis)
desirable change in our notion of irreducibility. With the
variables (1.6) we are led to say that a graph is r-reducible if
by cutting up to r lines it may be disconnected into two com-
ponents each of which contains an external vertex; otherwise
we say it is r-irreducible (see Sec. II of I).

The underlying theme of this series of papers is that »-
irreducibility is best understood and analyzed through the
interplay of two key ideas. The first is that the systematic use
of generating functionals ( = higher Legendre transforms)
eliminates much of the combinatorial complexity of the sub-
ject. The second idea is to use Spencer’s “¢-lines” or “sepa-
rating surfaces” to give an analytic definition of r-irreducibi-
lity that does not rely on perturbation theory. This definition
thus eliminates the complexity and lack of rigor arising from
the use of (divergent) perturbation series.

We briefly explain Spencer’s approach {for more details
see I). The free part of the Euclidean measure of a boson field
theory is a Gaussian measure

du = const e~ V2 lTEF+m3%] _ congt ¢~ 1/26C'9)

(1.8)

with covariance C = (—4 + m3)~". Let C,

=(—A4, +m})~", where 4, is the Laplacian with zero
Dirichlet data on a (d — 1)-dimensional surface 0 CR?
which separates R? into two parts. (We shall generally think
of o as being a hyperplane.) Introduce the interpolating
covariance

Clt)x, ) =tC(x,y)+ (1 — ) C,(x,p), O<r<l (1.9)

and corresponding Gaussian measure duc,, defined as in
(1.8) but with C replaced by C(t). The effect of using d¢
instead of du . in perturbation theory is that graphs have a
factor C (¢ )(x, y) instead of C (x, y} associated with each line
joining vertices x and y. Lines crossing ¢ and hence perturba-
tion theory graphs containing such lines are distinguished by
the fact that they are zero when C(t) = C, at ¢t = 0. [Note
that C,(x, y) > 0if x and y are on the same side of 0.] That is,
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given a graph ¥ = %(t) with external vertices x, y,..., the
property “vertex x is connected to vertex y” is equivalent to
the property “ % (0) = Oif x and y are separated by o”’. Unlike
Ct)x, y),

Clx,y) = ‘9—‘;;[‘—’—’ (6, 5) = C(x, ) — Cy (x, 3)

is not zero when o separates x and y. This means that taking a
t-derivative of a line corresponds to cutting the line. As a
result, the property that “¥ is 1-irreducible between x and
y” isequivalent to the property that “ % (0) = (3% /9t )(0) = 0
if x and y are separated by ¢”, and similarly for higher irre-
ducibility properties.

At the nonperturbative level, the effect of using du
instead of du . to define expectationsisthat G = G {J; ¢ | ac-
quires a f dependence (as do "'V, '™, ). Motivated by the
above discussion of graphs in perturbation theory, we can
define the irreducibility properties of an object like a BS ker-
nel or vertex function in terms of the vanishing of its ¢-deriva-
tives, without any reference to perturbation theory (see Sec.
II of I). This is Spencer’s approach, and it has already been
successfully applied in a number of situations.” "'

As an illustration of how nicely the ideas of generating
functionals and separating surfaces combine, consider the
assertion that the Green’s functions

Gn (xh'"rxn) = .1_-[1 51‘(,:,-' G {J} |J=0

are connected for n = 2,3,... . This assertion may be equiv-
alently expressed in terms of the generating functional
G|{J;t}as

§*G {J,,0,...,0,0}

8Jy(x,) 8J(x,)

ifx, and x, are on opposite sides of 0. We refer to (1.10) as the
“connectedness of G {J;t }” (see Sec. II of I). But {1.10) is
obvious: When ¢ = 0 duc, = duc, factors across o and,
since the interaction part of the Euclidean action is local,
(- ) also factors. Hence if F _ are functions of ¢ depending
only on ¢ on the + side of o we have

(F,F_)=(F,)(F_) at t=0.

In particular, taking F, = exp(y , /,'¢), we obtain

G{J,.00} =Gy, Jy} +Gi{x_Jy}, (1.12)
where y , (x) is the characteristic function of the + side of
o. (1.10) follows at once from (1.12).

The basic differentiation formula for '™ (N> 1) is
quite simple:

g, T (At} =T, (41} 47
for suitable 4 (Theorems III.1 and VI.11). The evaluation of
d;I" thus reduces to the evaluation of functional derivatives
Iy, 4,.. of I'. The thrust of Sec. II1 is to express such func-
tional derivatives in terms of the more familiar connected
Green’s functions G,,.

In Sec. IV we show how easily r-irreducible expecta-
tions'? and r-particle projections'® may be expressed in
terms of the Legendre transform. A typical formula is the
one for the r-irreducible expectation of ¢  and ¢ (i.e., r-

=0 for all J, (1.10)

(1.11)
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irreducible between the arguments of ¢  and the arguments
of ¢):
(p5H" =TGN (0} for r<i,j<N.

In Sec. V we show how I" ") generates the N th order BS
kernel K V!, the basic formula being

K Wix, y)= — connected part of I"{), , {0},

where x, yeR™,

Although Spencer’s idea liberates us from divergent
perturbation theory, it does not solve all problems of math-
ematical rigor. As a matter of fact it introduces new prob-
lems: not only must we show that, say, '™ {4; ¢ } is well
defined and differentiable with respect to 4 for 4 in some
Banach space of functions, but we must also worry about
whether it is differentiable in # and whether the resulting
formulas make sense. We postpone such questions until Sec.
VLI In particular Secs. II-V are written as though G {J },
T'"™){4},... were bona fide regular functionals on some Ban-
ach space and all the formulas made sense in this framework.
However, as we explained in I, such assumptions are dubious
for N>3 and it is necessary to interpret the results of Secs. II-
V in the framework of formal power series (fps) (see II). Thus
when we provide the mathematical justification for these
results in Sec. VI (such as the existence of G, I"'", their
regularity in ¢, validity of the differentiation formulas, ...) it
is in the context of fps.

In conclusion, ") and I""/¥) generate a variety of ob-
jects (in addition to the vertex functions) whose desired irre-
ducibility properties may all be summarized by appropriate
(channel) irreducibility properties of the Legendre trans-
form. The proofs of some of these properties have already
been given in I and others will be the subject of future papers
in this series.>'*

Il. THE DEFINITION(S) OF ™V

In this section we discuss the relationships among sev-
eral N th Legendre transforms (see Theorem II.3). We shall
deal explicitly only with complete transforms although with
obvious modifications the results are equally valid for partial
transforms. We start by reminding the reader of the defini-
tions of ") and STV and by defining ™). Let
J = (Jg-..n/n) , where J, =J,(x,,...,x, ) is a symmetric func-
tion of n variables x,€R®. For notational convenience we
allow a J,eC component in J although generally J, = 0.
Then the source terms are

UJ}=J¢' (2.1a)

and
UY{J)=J:i¢', (2.1b)
where the “physically Wick ordered” powers are defined by

< pis - = i 2 -
i =1dx ) x)i = (,LII 5f(xk)) (e”)

e
(2.2)

For example :¢: = ¢ — (¢ ) and
197 = (181 — (i1
=42 —20(p) — (8% +2(¢)>
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Remark 1. It is obvious from the definition that (3¢ ;)
= Ofori> 1. However, Wick powers are not orthogonal with
respect to - ), i.e, (i :4/:) 50 for 1<i <. See Sec. IV
for the appropriate orthogonalization procedure.

The generators to be transformed are

G {J} =In{expU {J})
and

G¥%{J} =In(expU¥ {J }) (2.3b)
with J, = 0. The conjugate variables we shall use are the
connected variables
AT} =G} = G(0) =G/} — 47, 1<i<N, (24a)
AXJ}=Gr{J} -G {0}, I<i<N, (2.4b)
where G, {J} =68} G{J}, 4] = G, {0}, and the Schwinger
variables

AT} =G, {J}. (2.4¢)

The conjugate functions to the G ’s written in terms of these
variables are the Legendre transforms of interest:

r'fa} =G4} -G, (J(4}}J{4], (2.53)
STMA%} =G (IS {4°}] — G, {JT{4°)} Ji{4°],

(2.3a)

(2.5b)
WF(N)[A W}
=GV VAT -G 4TI 4",
(2.5¢)

where J {4 } is the inverse of the map (0, J;,....Jy)—4 {J },
etc. In Sec. IV we also consider transforms I""""), where g,
=¢" + - is a more general polynomial in the fields than
¢ orig"i.

We will shortly see (in Theorem II.3) that
I'{A} ="TI {4} . Nonetheless it is much easier to deal rig-
orously with *I" {4 } since G " {J ] provides a natural do-
main for J, namely

{J=(0,J el W)V, €J) < o, J; symmetric} ,

where €, = 6,C ®'and C is the covariance of the theory.
For example, in €P (¢ ), [weakly coupled P (¢ ),] we have by
Theorem V1.2 that |{(J;:¢ :)"|<const{J, €J)"*. The rea-
son for this is that, thanks to the subtraction scheme in : :
every field in : ¢ ': must be connected to to something out-
side its dots. To be precise suppose the expectation ( - ) fac-
tors across o, g(¢ ) is some polynomial in the field supported
onthe + sideof o, and theset /_ = {k |the argument x, of
¢’ is on the — side of o} is nonempty. Then

(ig" gd)

=( s ) (e¥gl¢)) ( 4 )(e"’f>

e, Of (xy) (e*) el Of(x) /] {e*)
=(i¢g":igld) (i¢" ) =0,

where 1¢+: = IL,.;, é(x,): . Thereis also a natural do-

main for 4 in ¥I" {4 } because of the subtraction in the defi-
nition (2.4b) of A ¥ {J }. This domain is

{44, € '4)< «, A, symmetric} .

See Theorem VI.1.
The virtue of 5T" is that it is easier to compute with than
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I’ while at the same time being simply related to I” (see Theo-
rem I1.3). Hence we may derive formulas for (the more phys-
ically meaningful) I” by first obtaining the corresponding
formulas for 5T".

The change of variables 4 = 5F {4 + A4 °} (see Lemma

1L.2) relating 7" and °I" is implemented by the functionals
F,{A}, where

z Ff-exp{ 1~'—Af'

=

ie., (2.6)

L6 1
F {4 }(xy...x;)= (rgl (Sf(x,)) exp [p;l EAP fp}
For example, F, =1,
Fix,) = 4,(x)),
Aalxy, Xo) + A,(x) 4,(x2),

F(x;, x5, x5) =

f=0

Filx, x3) =
As(xy, X3, X3) + (Ay(xy, X,) 4,(x5) + perms)
+ A \(x) 4,(x;) 4,(x3)

=A;+ 34,4, +A3 .

Remark 2. We must take into account in the definitions
of 8/8A4; and 8/8J; the fact that our generating functionals
are defined for J; and 4; symmetric. This is done in the obvi-
ous way. For example,

)
rmx
_“‘“‘6142()‘, y") Ay(x, y)
d A
=71._Fm [A,,A2+ > [8(- — x) &(- — y)

oty st -, .

We shall also use the symmetrization convention that all
formulas are to be interpreted as symmetrized so that J,, 4,,
6/8J.,6/64,, F,, etc., are symmetric under permutations of
their arguments. With this convention it is often possible to
write { f(x,,....x,,) + perms} as nf(x,...,x,, ), where » is the
number of permutations.

It follows immediately from the definition (2.6) that
F;{A4 ] depends only on 4,,....4;, , that F obeys the addition
formula

(i
E{A+B}=Z(j)ﬁ}_j {4} F{B}, 2.7)
j=o0
and that for j<i F obeys the differentiation formula
8F, {4 J{uy..ou;)
SA;(x ... X;)

=(r_16f )_:—l:[ )exp[pglﬁApfp]
( )(,I_Iﬁ —xk) (A Wy etts) - (2.8)

(Note the use of the symmetrization convention of Remark
2)

These functionals are also intimately involved in the
relationship between Wick-ordered and un-Wick-ordered
products of fields. For example,

7= +2F [ —A" 4+ Fr{ -4}
In general

s=0
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Lemma Il 1.
= S Wi 4, 2.9)
(b) ¢"=4_ﬁ Wi, (2.10)
) U¥{J}=U{W~'J}, (2.11)
where
Wi
i NS/
F . 0y _ il &y + 1
= (z) il 247 (j)(&f) ) r—o 0<j<i
0, otherwise,
l/_l(xl S Yee)
8x, — — APt s V)
()(H e ) Bl =00 amnih oy

0, otherwise.

Remark 3. Here the products are to be interpreted so
that the number of variables and the symmetry properties
match up properly. Hence W = ¢is the symmetrized tensor
product of W~ and ¢/ with the factor (} ) in the definition
of W~ being the number of terms in the sum

(Wff ¢j)(xl“‘xi)= Z Fx —j E - } (xl')¢1r

where¢ ' = I1,_; ¢ (x;)and x,. = (x; )¢;- On the other hand
W ~‘(the transpose of W ~) acts as the integral operator
(W T )ilx e, )
=J[(x1"'xi)+ ( )det+l
j=1 + 1
X J(3,%).

Note that W *, W, and W ~ ' are all triangular matrices
with identity operators on the diagonal and hence are all
invertible.

Proof. The lemma is an immediate consequence of the
definitions

o:= 3 ()2 @] ¢ seaan,
30

j=

L

=0

<e‘”f>i‘=eXP[ + ZLAV]

=1 b

e ALY

[see (2 4) and 2.6)],

=S Suwis)=Uw ) .
Lemma 11.2.
@) AS[J}=F(4[J]+4°)
b) G} =F{4"{J}},

() A{J]=A{W -}
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Proof.(a) AS=(gp'eVVV) (V1) ~!

_(:f) (e¥+ U1y (eUID- "fﬂ
(5f) explG (J+/) — G (J])

b

f=0
(2.12)

where we identify fand (0, £,0 O, .,0). But

G{J+f)—GJ} = 2 LG

2 -:—A +A9f

and the assertion follows from the definition {2.6) of F.
(b) From definition (2.3b)

Gl =(ip'1e"") ("")"!
=(3) @ en @ e
5 i W w w
~(5) ewic” 141 =6 111 6" 71}

5 1 W w j
=(5) w| $ s6r 1 -arionr)
=F{4A"{J}} by (2.4b) and (2.6).
{c) Note that in (2.11) the only components (W ~'J), of

W —'J having a dependence on J, are the i = 0,1 compo-
nents and

’f:o

f=0

f=0

(W—T)y=Jy— A% J, + terms in J,---J ,

(w =), =Jl + terms in J,--J), .
Hence

G.‘W{‘I} =GI{W-‘J} ~ 8, A?
and the claim follows from definitions (2.4a) and (2.4b) of 4
and A% ]

We are now in a position to present the (formal) rela-
tionships between I, "I, and 5T".

Theorem I1.3.
@ I{4)="r{4},
(b) I'{d}="T'{F{A+4°}}.
Proof.
(a) Denote by B ") the restriction of B, to 1<i, j<N.
Setting J, = 0 we have by (2.11)
GW{J} _G;:/{J}Ji
=G{W "\WJ)-Wg5 J,
=W G, (w1 yWiyg, —wg J]
=G| W“')‘”'Jl — G (W =Ty w1y,

However, both 4 ¥ {J ] and 4 {J ] are independent of J, so
Lemma I1.2(c) gives (W ~*)¥ J¥ {4} =J {4 } and hence

T{A}=GY " (4}} -G (4}}IF(4)
=G{J{4}} =G, (J{d}] (4}
=ri4j.

(b) By Lemma I1.2a F {4 + 4,{ = A°{J {4 }} so that
from the definition (2.5b) of SI"
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T{F{d+A4))} ="T{A°{J{4}}}
=G{J{4}} -G, {J[4}}Ji{4]}
=I{4}. |
Theorem II.3 provides two special cases of a general
result which states roughly that changes of variables in the
source space (i.e., the J’s) or in the maps defining the conju-
gate variables (i.e., 4 {J }) cause only a change of variables in
the Legendre transform. More precisely, if Qis a real Banach
space, G is a real-valued Fréchet differentiable function on Q
and Pis an invertible map from Q toits dual Q * we define the
P-Legendre transform by

"G p) =GP~ (p) —(VG(P~'(p) P~ '(p)),

where VG:Q—Q * is the Fréchet derivative of G. It is not
hard to see that if G,, G,:0—R are related by

G,lg) = G\(Tq) — (a,q) ,
where T 'is a bounded linear map on Q and A€Q *, then
PG p)="GHP(TP, '(p)- (2.13)

InTheoremIl.3awehave G, = G,G, =G Y%, T = (W —* )W),
P, = A,and P, = A ¥. What makes these varlables so special
as far as (2.13) is concerned is that (by Lemma II.2c)

P, = P, T rather than P, = T*P,T as one would expect for
the “vector” variable P = VG. As aresultin (2.13) P, 7P, !
is the identity operator and G ¥ = G ¥.

Ill. DERIVATIVES of "™V

As we discussed in the Introduction we use the ap-
proach to irreducibility introduced by Spencer.!? In this ap-
proach the covariance C is replaced by C (¢) [see (1.9)] and
cutting a line corresponds to taking a r-derivative. Accord-
ingly we modify definitions {2.3)—2.5) in the obvious way to
include a ¢ dependence; thus, e.g., G= G {J;1},4°

= A*{J; t} so that upon inversion J5=J {4 % ¢ }, and
Sr=ST {45t} =G {JS{AS;t};t}) —ATIT {451} .
To discuss irreducibility properties of I" { 4; ¢ } we must be
able to differentiate it with respect to ¢. Note that in such
computations A4 and ¢ are the independent variables. Hence,
denoting /9t by , we have

S'=G+G,J5—43J=G. (3.1)
In Theorem III.1 we derive the corresponding formula for I°
and express I"in terms of functional derivatives I" 4, Thenin
Theorems II1.3 and III.7 we give formulas expressing func-
tional derivatives of I" in terms of the more familiar connect-
ed Green’s functions G,.. Many of the properties (and in par-
ticular irreducibility properties) of I" follow from an analysis
of these formulas.>* Again as in Sec. II we deal explicitly
only with complete transforms although again with obvious
modifications the results are valid for partial transforms too.

Theorem IIL.1. For N>2

(a) T™{d1)= —4C({) (4, ~ A3 —4547),

(b) I'™M{d;1} = —4C(£) ", + A4, +24,49)
+I'M4°,

where C ~'4, means
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—trC~'CC~'d, = — fdx dy C(x, p)[C ~'eC ~'4,)x,y).

Remark 1. We warn the reader that some care must be
taken when manipulating C ~'. See Sec. ITI of I.

Proof. (a) If du ¢, is the Gaussian measure of mean zero
and covariance C (t) then'?

5, [ 116)duc,
= 1| [ w8t axar|r6)duca,.

where : : is Wick ordering with respect to du,,. Hence
G/} = —ICNG,{J} —G,[0}) (3.2)
and so by (3.1)
T{A%)= —1C~" (47 - 43 -4 47).
(b) From Theorem II.3b

. . SF, .
I'{A}=°T'{F{4+A4°}} +SFA‘§A5’
J
= —1C " F,{4+4°) —Fz{AO})+FAIA}’
= —JC "4, +A4,4,+24,40)+ T, A]. W
We now turn to the question of expressing I, ., in

terms of G, . This will be done for m<2 in Theorem I1I.3 and
for m > 2 in Theorem III.7. In Theorem II1.3 we express
', in terms of

-, o

where

S fgl=explG{U+f+gl —G{J+f] -G{J+g]
+GJ]]. (3.3b)

Here fand g are functions of one variable and we identify f
with (0, £,0,0,...). Each index i is an abbreviation for a set x
= {X,,...,»x; } of i points in R and (86/5f) is an abbreviation
for IY, _, (8/8f(x,,)). Hence S;; is a “function” on R“ X R
and S should be thought of as a matrix whose (i, j) entry is the
operator with kernel S;:

1 0 0
0 G, G,
0 G3 G4 + 2G§ b ’

where G, = G,,{J } and we have used the symmetrization
convention of Remark 2 of Sec. II. For example,

S22 (x?, ¥ = Galxy, X3, y1, ¥2) + Galx 1, Y1) GalX3, 3)
+ Gylxy, y2) Golxy, 31) -
The significant features of S are isolated in the following

remarks.
Remark 2. As a consequence of

_ < f'g’
718 =en| $ 6.8
we have that S; =S, is a polynomial in
(G |k Ciuj, knis®, knj#B}. So every space-time point in i
is connected to a space-time point in j and vice versa.
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Remark 3. Note that S is independent of &, the order of
the Legendre transform. In particular, S is a function of
(o> J1 sJo,--.) rather than (J,,...,J v ). Furthermore, we do not
restrict the arguments of S; to the range 1<, j<N. When we
wish to do so we will use S to denote the resulting N X N
matrix. In the following analysis, inasmuch as G generally
enters in the combination G {J {4 }}, S enters either in the
combination S {J {4 }} or in the combination S "{J {4 }}.
Hence the N dependence enters through the superscript (V)
and through J {4 }.

The reason I"'y’, may be expressed in terms of S is
provided in

Lemma 111.2.
(a) For all m>0, 1<n<N
b4, 1 f(n
‘_51 =k20 (k)Af'k Sim (3.4)
n 6F,{A+A4°}
=> 5, (3.5)
= k

with the conventions that for al/l m>0
A5 = (gmeVh)y (V1)
4,=G6,{J}-G,{0},

6F,

o4, "

(b) As N X N matrices

8 _ g (5F (4+4 0}._>'.
57 54

Proof. (a)

64, (5)mAS ;
5-,,1 - 6.]1 n{ }

. (zzlz()is%)m(gf)nexp[G{J—f-f}_G{J}”/‘O
y (<.

_ (6%)”‘ (%) explG (J+ g +f)
—G{J+glllmg=0
_ (;_g)’" (;S_f) exp[G (J +f} — G {J]]

xXexplG{J+g+f} -G {J+g} -G {J+f]
+G{J}]|jmg=0>

which yields (3.4) by the definition (3.3) of S. To derive (3.5)
we need only apply Lemma I1.2a and the differentiation for-
mula (2.8) for F.

(b) When 1<m, n<N, S,,, is zero unless k31 and
8F, /84, is zero unless k<n<N so that (3.5) becomes

84, & SF,

m — Sm o n
8J, k§1 * 64,
N 5F>t
= S [—] . n
k;l mk (614 kn

Theorem IIL3. If x* denotes (x,,....x;)ER“
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5F, (4 +4°)

F(Nxm)=_Jk[A} aA(m)
N
= = 3 (5) et 4 s,
. (3.6a)
riy, = () e, s, 560

where the argument of I''{) is the union (x'?, y/) of the
arguments x' and y'? of "'} and I'{Y), respectively. Fur-
thermore, I'ly) =0ifi 4> N.

Remark 4. Parts (a) and (b) are the analogs for I” of the
conjugate relation SI", = — J and the Jacobian relation
Sr,. = — G ;; ', respectively. In particular, when J = 0,
(3.6) reads I} = —(SW) 1.

Proof. (a) 'I‘he first part is an immediate consequence of

™4} =G (J(4}) =T[4 )F, (4 + 45}.

To prove the second part we observe that, by the differenti-
ation formula (2.8) we must have k>7 and then

6F,

J {4} v =(k) u""(f[[f(u —x ))Fk A9

= (I:)Jk (et =, = 0). (3.7

Note that the symmetrization convention implicit in (2.8) is
irrelevant since we are integrating against a symmetric func-
tionJ,. ) ]

(b} Differentiating part (a) yields

SF, _(u*?
pm——z(ywwwpgﬁwl
8F, 8J,14}
84, 64,
= & (ky(k—i 10 ) gtk —i—1)
h _k=2i+j(i)( J )Jk(x yo )
X Fy i)
(51«") 8J,
84 /i 5A

by the same calculation as in (3.7). That the sumis I, |18
the content of part (a). That (5F /84 )}, (8J,./64,)is S "isa
consequence of the Jacobian relationship 67 /64
= (64 /6J )~ "' and Lemma II1.2b. Note in particular that

84 /6J isinvertible by hypothesis, §F /64 isinvertiblesince it
is a triangular matrix with identities on the diagonal, and
hence SV is invertible by Lemma III.2b. [ ]

By Theorems III.1, II1.3, and II1.7 we may reduce the
study of the irreducibility properties of I" (sce I and Ref. 5) to
the study of the connectedness properties of functionals like
S; that are defined in terms of G {J }. The connectedness of G
itself is easy to establish from its decomposition property [see
(1.12)]. S inherits from G a similar decomposition property.
It may be stated fairly simply if (when ¢ = 0) we view S, S V),
and §V'"" all as operators on spaces of the form

H = eao H,
where #¥ = CH#" = 7" o # is a space of functions

852 J. Math. Phys,, Vol. 23, No. 5, May 1982

on R? and #'=(#"")"'is a space of symmetric functions
on R%. Y is the space of functions from which J, or 4, is
chosen. We assume 5#" is composed of the two pieces.

1) = {those functions in S#" supported on R?, },
where P&“i denotes the + side of o. Similarly 7, the space
from which J or 4 is chosen, is naturally composed of four
pieces:

K =CeX ok _oH,

where
L 1 @i
>, =’_S!(%i)

We denote by P, P_, and P, the projectors on #°,, % _,
and #°,, respectively.

When ¢t = 0 and P,/ = 0, henceforth referred to as “at
07, the expectation (-) factors [see (1.11)] yielding the de-
composition property

G{J}=G{P,J}+G{P_J)} (3.8)
of G. Hence

GU+fl=G{U+fx ) +G{J+fy_} -G|J}
so that

Fife) = oy} U _gx ) (3.9)
and
S; =S84, 8, (3.10a)

_ 20 20( t )( )s 'S e (3.10b)

by the product rule for differentiation. Here i, denotes those

arguments of i that are in R%, ; S denotes the restriction of §
+

toCe %, . Weimpose the convention that S ; is defined for
+

alli and j {regardless of which side of o they are on) but is zero
unless all the arguments of / and j are in R?, . Hence all but
one of the terms in the expanded symmetrized version of
(3.10b) are zero.

The formulas (3.10) represent S as a tensorlike product
of § and §. It is only the symmetrization that prevents %°

+ —
from being the tensor product (Ce #°, )@ (Co #°_).Ac-
cordingly we identify each f(x)e#'] ® ¥V with its sym-
metric extension to

7= ("7 )i e

(where S, denotes symmetrization with respect to x). Note
that if x'%eR?_ and y"€R? we have, as desired,

Flco gy = (i —:__j)(Sf Jx %)

= (i +]) (1 +j)' ; f(ﬂ-(xm,ym )
— f(x"’ (/))

since there are precisely /1 nonzero f(r{x",y")’s and each
one equals f(x'),y"), We extend this identification to all
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fe(Co ¥ )8 (Ce 7 _). Itisthen natural to define the “ten-
sor” product 4 X A :5#°—J7 of two operators
+ —

ACo¥  —Co, by
+
AXAf= A®Af. (3.112)
+ — + _
The kernel of 4 X A is given by
“+ —_
(A XA) (™, pim)
*
=5,8 ) A (x0pNa ‘(x(m/l')’y(n/j)),
3 5 (7)aumm
(3.11b)

wherex"” = {x,,..,.x;} and ™" = {x,, |,...x, ]. Asaresult
of (3.11a) this “tensor” product enjoys the algebraic proper-
ties one expects—namely linearity in both arguments and
the product rule

(4x4)(zxB) (48 )x(a5)

The decomposition property (3.10) of § may be rewritten in
terms of the tensor product as

s=[(sr=)x(s#=)Jraco

where F is the (infinite) diagonal matrix with F;, = i!. From
this we have immediately that

s {(rs s )

However, (3.13) is of little value since it is § V)"’ that we are
primarily interested in and the projections that restrict .S to
S do not commute with either taking tensor products or
inverses. [We remind the reader that, to view S’ and
(S ™))~ as operators on ## we here impose the conventions
S = (§™),; ' =0 unless 1<ij<N.] Nonetheless, S
does have a simple decomposition property:

Theorem I1IL, 4, At O

(3.12)

(3.13)

S= [(SF")X(SF_I)]F. (3.14)
+
. {m)~! (N—m~!
o e § (55 (™)
m=0 -
(m) (N=m— 1)
- (Fs )X(FS )] (3.15)
m=1
where the last sum is zero if N<2 and S’ = (§') 7!
_61,06_1,0
Example.
m ! 2 2! -’
PyS™ ':F“‘{S x(FS )+(FS )xs
+ — + -

- -
-85 XS ,
. ~

where by (3.3) (§™); '=G ;!
wise, and

if i =j =1 and zero other-

G2 G3 )‘1 . ..
, if 1<ij<g2
(S, 1= ((;3 G, +2G3/, J

0, otherwise.
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P(N’SP‘N’F_I[

Proof. Let 77 be the projection on F7, P
= Y 7Y, be the projection on #) @& #},

j=1

PM— S

m,n>»0
1<m + n<N

be the projectionon ¥ @ - @ #™),and P® = P =79
be the projection on C. We must verify that multiplying
P™SP ™) by the right hand side of (3.15) yields PV). Now

N (m)~?! (N—m)!
S (ms )x(ms™ )
N2 ~O(m)” (N—m—1)~"
- Z(FS )x(Fs )]
— pW) i (Sslmr‘>x(ssw—mr‘)
N=2/ m)~! *(;—m~—1)"
- Z( A )x(ss )]

me1\+ + - -

by (3.12) and (3 14) The crux of this proof is the observation

that while S S is not P'7' the error “lives”i
ot ”ee%"’”’@

m)
SS =P($)+E(I:tn+l),

(3.16)

. To be precise
(3.17)

where the error satisfies
PImEm P‘”"(S S( ))S o,
Substituting (3.17) into the ﬁrst sum itn (3.16) gives
PN IEV: (P 4 Elm+ 0y (PW=m 4 EW-m+ 1),
Many of :lhe Oresulting terms in this sum are annihilated by
PW because if (P9 + P77~ ”),1
= (P9 4 p¥W- ’"’)A = 0 for some m = 1,...,N (so that

A XA livesin# WV + e Vg . )thenP‘N’A X4 =0.
We thus obtain

2 Pm}XP(N mt+P(Nl 2 Elm+1)

m=0 m*l

XP(N~m—li+P(N) E P(r:—1)><E(11’—m+1)y

m=2

(3.18a)

where we have dropped the terms involving E ) =0andall

those terms annihilated by P%), namely E 7 + "' P ="

m=N—1N), PP XEY" m+ 1 (m =0, 1), and ET Y
E(N m+ 1) E(M+ 1) X7T(N m) , and 1rlrni E(N m+ 1)

(all m). For the second sum in (3 16) we drop the E, XE_

terms to obtain

N2 N2
S PP pM S BT

m=1 m=1

N—-2
XPW=m=1 4 pWIS P N,

m=1

(3.18b)

The last two sums in (3.18a) cancel those in (3.18b) and so
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N N-2
zP(r)XP“!_m)" 2 P(r_:ixp(ll'—m—l)

m=0 m=1

(3.16) =

N-—1
=p(33 XP“X’ + Z P(z)xﬂﬂz—ml +P”1'XP@
m=1
= pW ]
Remark 5. Theorem II1.4 expresses SV ' as a sum of
terms each of which depends on the variables y’, A4, (or

X' A4;)only through S " (S ) for some m< N /2. However,
+ —

for mgN /2,
s =(5)(5)

&f

x [ (4 r'g
exp + A4
hkz;l h+k h+k)h'k']f=g=0

is a polynomial in 4, for / = 2,3,...,N and hence is indepen-
dent of 4,. Hence each term in (3.15) is independent of one of
Y+A4,and y _A,. This fact leads to the two-irreducibility of

the vertex functions "V for N»2.
We may also use S to give a convenient evaluation of

A°.

n

Theorem IILS,
PoA g(x("))lzzo = — 5P(,S'n2(x("),y(2’)(j _](yhyZ)lt:J:O'
(3.19)

Remark. We remind the reader that the effect of the
projection P, is to ensure that not all of {x,,...,x, } are on the
same side of o.

Proof. Suppose t = 0 and not all of {x,,...,x, } are on the
same side of o.

A5 =G, (=0}

= —4C (Y6, (), by (3.2)]

= —C G, + G,G,},; (byLemmall2)

= — QC - 10,1’y2){ Gl(yl)Gl(y2)}J;’ (since G is
connected).

When y, and y, are on the same side of o the connectedness of
G causes this as well as the right hand side of (3.19) to vanish.

So to complete the proof we need only show that when y, and

J, are separated by o

5
5f(v)5f(Vz) 7 fe) )f smo
= [1[Gip) 4 °(y)]\

i=1 J =(0,£,00,...)

(The 49 terms are eliminated by the J, derivatives.) But
whenJ =0 (3 8) implies

6
Foi53 7,
o (C )expiG{f+g} ~Gif) -G lgl) o
= H (GJ,(y) f+8}— J,(y,) [f})
Xexp{G{f+g} —G{f} —Glg}}l;-0
= iljl [G., (g} — 40))] a
854 J. Math. Phys., Vol. 23, No. 5, May 1982

We now continue with the project, started in Theorem
I11.3, of expressing the moments I', . , of I"in terms of G,

While the case m > 2 is conceptually similar to that of Theo-
rem III.3 it is characterized by a richness of obscuring detail.
Since this material will not be used later in this paper we
suggest that the reader omit it (at least on a first reading) and
go directly to our analysis of the N-field projections and gen-
eralized Bethe—Salpeter kernels in Sec. IV and V,
respectively.

(for m»3)in
terms of tensors S;; (of degree 2), T'\", (of degree n>>3), and
v ., lof degree n + m with n>3, m>0). When we say, for
example, that T™ is of degree n we are referring only to the
fact that 7" has n indices i, i, . As with S;, each index i, in
T™"(and U™} is an abbrev1at10n for an i, -tuple of points in
R?so that T\, is a “function” on R"“ X - XR"% We now
define 7" and U'™™. The most significant feature of these
definitions (see Remark 6) is the fact that 7™ and U™ are
polynomials in the Sj;’s, which in turn are polynomials in G, .
The appropriate generating functionals are defined induc-
tively by

In Theorem II1.7 we will express I A,

T fgh ) =L thg +f} — L {hf)

— Z{hg} + 115 fg), (3.20)
TN frrdn}) =D, T O frfu 1} forn>3, (3.21)
n—1
2" fu) = = T[T LU (3.22)
i=1
@'n’n]{.fl’ n+m}_gﬁ,+m%mm-”[fl! n+m—l}for
m>0, (3.23)
where the “derivation” &, is defined by
D, (S} i) = S O rim h° (3.24)

ijk=0 6SU Tk k! '

The evaluation of &, derivatives is straightforward if one
uses the following properties:

2,718} =T fgh}, (3.25a)
Dok +bB)=aD, A +bD,RB, (3.25b)
DNAB) =AD, B+ RBRD, A (3.25¢)

For example,
@(n”{f‘l’ n+l}
- Z( [ UL OUdder)-
i=1 Ij<n—1

i#i

Then % and 7 act as generating functions for U and T

it = {15 Ve ieo
om - H( )]@M'{fl 7 | P
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For example, since

Fhg+f} = F )~ lhg) +1
_ AN A
.;‘,gn A kY
k>0
we have
; i .
T(l_?ll = z 2( . )(J, )S.'_i',,'_j'sk,i'+j' (3.26)
= S SND N
and
vl = —

i
n
E o i.,i:"'Sinf A
o o 1] yeensky _ 4
ol

(3.27)

Remark 6. T, is a linear combination of terms of
the form S, S ~-S;  « , with each point of /, U---Ui, oc-
curring precisely once in j, U---yj, _ Uk, u---Uk, _, and vice
versa. (It is possible for some of the j/’s and & ’s to be empty.)
The structure of U ™™ is the same as that of 7 but with
degree of homogeneity (in.S)n + m — 1 instead of n — 1.
The basis for these definitions is

Lemma II1.6. For 1<k<N

Sy(J{A}} =T{.S¢

6

(b) —— 54, —Tio ) ({4} =T, S forn>4,
() 53 VSR ) = UL st
k
forn>3, m>1.
Proof. (a) Firstly,
57108} _ 4 5 re
27 ) o s T4
Ut~ s 3 S| AN
8G. ., &6J, f' o
— g Y s Sn [ 8
i O, A 0
1<n<N
O6F, &J, ' g
=5 Sppp; ———=
e} %1 KT 54, 6, 1 !
e [by (3.5]
S e
=y{f’g}zsk',f'+l' (N) I' jl‘

by the Jacobian relationship 6J /84 = (64 /87 )~ and

Lemma II1.2b. Hence

2 - (2)(L) e
64, "’ 5f)\6g) 64, feg—0

IAY A '
= Z (ir)(’{/)si—i',j—j‘Sk',i'+fSk’,i' +j'S(kl)c

1<EKE

<<

1<k'KN
as desired.

(b) Think of 71" 7 " {J {4 }} as a function of {:S;} each
of whichisin turnafunctionof J {4 }. Then, by thechainrule
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_6_]‘(" 1) _5_T(n—n ‘Si

84, " or8s, T 4,
5 -1 '
= ma ) TSP, " [by part (a)]
58S ’
=T, S™ '[by(3.21)and (3.24)].

(c) The proof is virtually identical to that of part (b). B

Weare now in a position to complete the project commenced
in Theorem III.3.
Theorem IIL.7.

Lyylggeend

(jl + -+,
N A A

+(;S(N)"U(n,0)) ,

Bty

n
where each S " in ® S/ " acts on the corresponding in-

dex if U™ 9,

3
(b) "5, —(' - )F‘”l,ak (@S‘”""T“‘)W

(Y (a5 )
l,j,k ivitk ik

+(;SW"‘U‘3'°’) .
ijk

(c) Forn>»3
iy
N N
r("i.')"A',. =( i i FE“;.]"'"'*’"n
13eesly
Pliidf f P .
sorgeo) |
+ P;:’; [(® iyeeedy A’p+l...A'n

3
(N)~ ' (3)
+ [( ®5 T )i,i2i3]Al."'A'n '

where P (i,i,) = max{p [iy 4+ i, <N, p<n}.

Remark 7. Evaluation of the remaining A, derivatives
in part (c) by means of Lemma IIL6 results in a sum of terms
each of which may be viewed as a tree graph with

(i) n external vertices each associated with a different i,

(i) each line associated with SV,

(iii) each vertex having m legs (m is always at least 3)
associated with either 7™ or U ™ ~? (with p>3,

m — p>0).

Proof. (a) By Theorem II1.3b

b+t ti,
[ e,

T Wi A,

_(l‘fm_’f_l")rg\')
Eiyeens] v

»n

- —(l+ +l"¥l A . .
l] l"_] Lr N T ol PR

Applying @ S™) yields, for the right-hand side,
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(N),..Q V) (N)
ij"| S1"7 tin _ IS]n'n
il+'"+in—l (v)y~!
X1 — . . £ A et i i
Lygeinsdy
— QN . CV)
- Sjlil Sjn- the 1

RS I
B R A A et

I
_ — o
- Z( ; Sl Sjn— tin_1 Ujl"'fn’
Pyl g

where the sum runs over i,,...,j, _ €{1,...,N } with
i, + - +1i,_, =Jj,. We remind the reader that PV is the
projection (i.e., identity)on H V' & --- @ H V). It islegitimate to
drop the superscript N from SV since we are considering
only j -, _ 1€{1,...,N }.

(b) This is an immediate consequence of Theorem
II1.3(b), followed by Lemma III.6a, followed by part (a).

(c) This follows immediately by induction from parts (a)
and (b). About the only point worth noting is that if
iy + - +i,_; >N then by part (a)

P
(QS(N’ 'U(p,OJ)

— const I, =0
e

Remark 8. We observed in Remark 7 that Theorem
IT1.7 could be used to produce a tree graph expansion for
r# , {0} having §™)" s for lines and 7"s and
Utem = Ps for vertices. Now T and U™ ~# are polyno-
mials in S;, which is in turn a polynomial in G, (with k>2).
Hence knowing the perturbation theory expansion for
G, { J = 0} yields the perturbation theory expansion for
ry , {4=0].Inany given order of perturbation theory

then 7™ and U'?™ ~# may be represented as a sum of
Schwinger functionlike graphs. By this we mean that the
graphs are not amputated and that they need not be connect-
ed. On the other hand, in the free theory S¥ (4 =0)= ¥,
where ‘2,7 = &ﬂ‘.‘? ®i so that

=constl", =,
. [P

il

SN =g 4 T @ U—sMe
n=1

Each order of the perturbation theory of S is not a sum
of conventional graphs. Instead it is a sum of terms each of
which is a tensor product G C ~'® .. C ~' of an am-
putated graph G *™ and a number (possibly zero)of C ~"s. A
careful analysis of what happens when these expansions for
T, yP»m=-p and S™' 'are substituted into the tree graph
expansion of Remark 7 yields the result that, in perturbation
theory, I"''". 4, {0} may also be represented as a sum of

terms of the form G** @ C '@ C~'. Here G*™isa
conventional amputated graph. Furthermore the arguments
x, and x, of any C ~(x,, x,) must be arguments from two
different 4, ’s. Finally there can be no C ~ Vs in any graph in
the perturbation theory expansion of (8/84 ) ™| , _, if
k #2. This is no surprise since I’} , {0} is connected and
every C ~ ' occurs as a distinct connected component of a
graph. Hence we expect I"')! , {0} to have better regularity
properties than a general "', .
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IV. THE ~FIELD PROJECTIONS

The r-field projections for a Euclidean scalar boson
field theory, whose infinite volume measure and expectation
are denoted dv and <->, respectively, are defined as fol-
lows. If

H=L2,(dv),

real
H_,=CCH,
H,, = span{${f})-4f,)|n<rfeC&u(R)}
then P_,, the projection onto r or fewer fields, is simply the

orthogonal projection onto A _,. The r-field projection P, is
then defined by
P, ifr=0,

P =
’ [P —P ifr>0.

Wealsolet P, =1 — P_,. These projections have the basic
properties

(4.1)

<r <(r—1}»

Py = (¥), (4.2a)
P.é(x))¢(x,) =0 ifm<r, (4.2b)
P, = Z P, (4.2¢)
n=0
1= 3 P, (assuming the H_,’s span H ), (4.2d)
r=0
PP = P(min(r, 5 (4.2¢)
PrPs = 5r,sPr’ (42f)

all of which follow immediately from the definitions.

The projections P, for 7<2 have long been used to ana-
lyze the low mass spectrum of quantum field theory mod-
els.”*!116.17 Of particular interest have been the r-irreduci-
ble expectations

(58N =(¢'P, .87
used by Spencer and Zirilli"'? (for 7<2) to study the low mass
spectrum of (even) €P (¢ ), models. The higher order projec-

tions (i.e., > 2) were introduced by Glimm and Jaffe.'* In
particular, the inverse of the operator R " given by the kernel

R (r)(x(r)y(r)) — <¢ '(x(’))P,gb r(y(r))>

played a central role in their definition of the higher order
Bethe—Salpeter kernels (see Sec. V). The irreducibility prop-
erties of various of the above objects have been studied by
Combescure and Dunlop'® and Koch.?

It is our goal in this section to show how simply one may
express the above objects in terms of partial Legendre trans-
forms (thus generalizing the results for r = 1,2 given in I).
This provides a convenient path for the analysis of their irre-
ducibility properties (see I).

We now explain why the projections P_, can be ex-
pressed in terms of Legendre transforms in a natural way.
This can be done quite generally as follows. Let

m—1
49 =¢"+ ¥ T,,¢", m=012,..
n=20
be a sequence of real polynomials in ¢. Two examples are

Gulin) = [] 6 (%) (4.3)

k=1
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and
4ubersnt) = T 8050 (@4

Let Q%" bethe (r + 1)X (r + 1) matrix whose (@, B ) entry is
the operator with kernel {¢,¢;) a,8=0,1,...,r. Then if
Q" s invertible

P =q,(0°"s5'(q59). (4.5)
To see this we need only observe that the righ- hand side
defines a self-adjoint, idempotent operator that leaves ¢, in-
variant for ¥ = 0,1,...,r.

Furthermore Q"' may be represented in terms of a
Legendre transform of

Z) = <exp[ﬁ qu,]> —1 (4.6)
where N>r. Let
AL} =25 (]}, O<a<r (@)

and

N8, AT, e F=Z9JY) — AT, (4.8)
where, on the right-hand side of (4.8)

Ji=J2 {4 §nd 3, ,...,JN}is obtained by inverting
(4.7) when O<a<r and J? = J; when r + 1 <i<N. (We shall
use the conventions that Greek indices take values up to and
including r while Latin indices run from r + 1 to N.) Note
that unlike the Legendre transforms of Secs. I1 and III
9"’V is a functijon of 4,. The Jacobian relation for 4" "/*)
now gives

549 \!
qriN) = ( )
Aao (SJ afl
so that if we set the arguments of “I” equal to their physical
values (i.e., 49 =A42{0} and J; = 0)
"I“‘;:;Yﬂ’ = — (0% (4.9)
As a result (4.5) may be written, for any N»r>0, as

(P ¥)b) = f dvé") polbd") ¥ (8)

where
P98 )= —q.6) T3 q5(8") .
From the point of view of irreducibility and hence spec-

tral analysis it is preferable to express P_, in terms of """
rather than ?I""/"). This we do in

Theorem IV.1. At the physical values 4 =J =0, we
have

B (P PIE) = [ dvi6')p (887 W18,
wherep_ (¢.4')=1—: ¢ I'{7): ¢ %:
for any N>rx1,
by (pP,, ¢*)y=TY " for all 0<r<i,j<N,
()P,W= —P, ¢"T), ($'P,, ¥) for all r>1,
(dR"'= -, =(8");" for all r>1.
Proof. (a) We remind the reader that when A =J =0
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r ‘A’f,i’J =r (A'LAB = —(S") " (by Theorem IIL3b),

where

[by (3.3)]
= (i¢°:11¢ P1) [by (2.2)]

and that S ' is the restriction of S whose indices run from 1 to
r. Then choosing g, = : ¢ “: we have Q = S and
1, a=6=0
©5'= 1 o
( S('))z:ﬁlv

and part (b) follows from {4.5).

(b) By Lemma I1.2 G, {J {4 }] = Fz{A4 + A4,} is inde-
pendent of /; and so the usual cancellation gives (with Greek
indices running from 1 to 7)

precisely one of a, 3 are zero
a>l, B>1

8J, 8J,

ryM=¢6, =2 +6,-6, -2

g ey, T T s

=G,.
Applying another derivative we get
éJ,

Ly =G, +Gyy, ;S‘E
k

= G.I,-Jk - GJ,.JB(GM)E1 GJ,, S
where G is the restriction of G, ,, to 1<a,B<r, since
5 bJg
0=—I(G, { J{4 =G, , —+G,,.
57, { J(,{ {411 J. g 57, A

On the other hand by part (a) of this theorem (since
A=J=0)

(¢'P., ")
=(p'd*) — () (%) — (1 6%1) (S")p' (1 6P165)
= GJ, 5o GJ, Ja(Gm)az?‘ GJBJk
since
GJHJk = W;y <:.¢yf ¢k>
and
GG, = Wih(ig7 1 ¢°) (W™ )y [by (2.10)]
=W, SUUW ).
(c)P¥ =P, P P, ¥
= — P, Y, (PP, W)
=—P,¢'TY,(¢"P, ¥) [by(42b)]
{d) By part (c) with ¢ =¢"
R~ ——R["I"(/?AR("

and so the desired conclusion follows if R ” is invertible. But
by Lemma IV.2 (which follows), for a = 1,...,r,

Pas¢‘1§ =(P<a _P<(a_1))§¢a§ = z VaBE¢BE!
B=1

where ¥ is a lower triangular 7 X » matrix with identities on
the diagonal and is hence invertible. Now

(by (2.10)]
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(VSV')ag = {( P, i) P51 71))

= ((P,¢ ) Ps¢”)) [by(4.2b)]

=845 R [by (4.20)].
Therefore the invertibility of R ..., R " is equivalent to the
invertibility of §'", which we are assuming. |

Remarks 1. The 1 in the formula for P_, of part (a) of the
theorem may be absorbed into the sum over a and 8 by using
a Legendre transform of Z {J,,....J v }.

2. The formula

(g.P,, g.) =T for all 0<r <i, j<N

may be proved by the same method that its analog for I" /¥
is proven in part (b).

Lemma IV.2.
(@ P, o™ = 2’: 20, ¢ for all r,m>0,
a=0
where
7= [ oo v

(b) P, ™ = 2 P ¢ forall r,m>0,
a=0

where
PUa=W, POWa,.
[Here we use the convention that (S");!

o, but is nonzero only for 1<a,8<r]
Proof. (a) For r = 0 the result is obvious. For r>1

P,ig™:

is defined for all

=(ig™) — a;l @i, (167 ™)

=8 — a;_ SpsT . 18

(b)P,¢™ = iW P4’ [by(2.10)]
_=,§0,,=0W+ P38 [by part (a))
=j§mgmg Wi POW 4 by (24]). B

V. THE BETHE-SALPETER KERNELS

Glimm and Jaffe have given'? an inductive definition of
a higher order rth Bethe—Salpeter kernel that reads

K(ri(x(rl,y(r)) =R "’”(x"’*y"’)
_ Z n_'(S S ®K(Ia|l)(xlr)’ylr))

me P35

(5.1)
where x'! = (x,,...,x,)eR™,S, is symmetrization in x'",
RY=($"P.¢") (see Sec IV),

&3 is the set of partitions of {1
subsets,

,-..r} into two or more
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!
n, = ks , where || is the cardinality of «,
IT |af!

acmT

and
K'Y= _FQIA,EO} =GJ_,J,‘{0;'

Thanks to the symmetrization all partitions 7 = {a,,....a, }
that have the same {|a,],...,|a, |} will give the same

S.S, ® K<V, (For example
7= {{1,2},{3}},7= {{1,3},{2}} and 7 = [ {2,3},{1}] all
yield the same S, .S, ® K ") This redundancy in (5.1) may

acm

be removed to give the equivalent definition

K"=R"W' _ >n,'K?, (5.2
pe?}

where 2" is the set of decompositions of 7 into positive inte-
ger summands without regard to order (e.g.,

2° = {{3},{2,1},{LL1}}),
D5 =D\(r], leg, D)=

n,=[n,k)
k
n ,(k ) is the number of k’s occurring in p [e.g.,
A () =3, noy @2j=1],

K»=8S.S5, e K.

kE P
As we have shown in Theorem IV.1d, R 1
= —TI''{, {0} so that the definition (5.2) may be stated di-
rectly in terms of the Legendre transform as

{215,111} }),

K= T, {0)— S n,'K".
peZ;

Note the principle that if we want akernel X (x,...,x;;...) with

r-irreducibility properties when the points (x,,...,x;) = x are

ina cluster we take an 4, (x")-derivative of I" " instead of j 4 ,-

derivatives (see I and Ref. 5 for more details). For example,

for r =2 and 3

(5.3)

Kz(x(Z) (2))

=88, (~ T30} =4l {0} eI, {0}),
K (3)(x(3)bv(%)]

=S8,85,[~I%, (0} —KYeK"

_ 1/3!K(”®K(”®K(“].

Remark 1. Our K is the negative of Glimm and
Jaffe’s.’® We have chosen this sign convention so that posi-
tive kernels are associated with repulsive potentials. For ex-
ample, in a ¢ * field theory

K(Z)(xl,xz,y,,yz) = 2446(x,

X 6(x,

—x)8(x, — yy)
-+ 04 %)

Remark 2. Combescure and Dunlop'® have analyzed
the cluster-irreducibility properties (with the x\” as one clus-
ter and y'" as a second) of K "(x"”,") without recourse to the
Legendre transform. We have used Legendre transforms to
analyze®’ the cases r = 2, 3, and 4. The use of the Legendre
transform has two important consequences. Firstly, the
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combinatorics are handled automatically yielding simple
proofs. Secondly, it is natural to consider not just the cluster
irreducibility of I, {0} but more generally that of

I 4, {4 }. Taking further functional derivatives "'} _,
yields irreducibility for arbitrary numbers of clusters. '

Note that the subtracted terms (1/n,)K # in (5.3) are
themselves r-cluster irreducible if K *! is k-cluster irreduci-
ble and so are irrelevant as far as the cluster irreducibility
properties of K ) are concerned. Their role is to “eliminate
lower body scattering processes.” In other words their role is
to make K "(x",y'") connected and not just cluster connect-
ed. When ¢ = 0 so that the covariance decouples across the
surface o we should have K "(x"",y'") = 0 whenever ¢ splits
the 2r variables x!”,)*" and not just when o separates all the
variables in x* from all of the variables in y"". This is indeed
the case (Ref. 10, Corollary 2.1, case d = 0). We now prove
this result without the restriction J = 0. Define the function-
al K"{J} by

KW =(s"31,
K7=(S""'~ T n;'K" (5.4a)
pes:
Alternatively
(S = Sn K" {5.4b)
peD”

Theorem V. 1. K "{J } is connected, i.e., at O,
Kx" M =0 (5.5)
whenever o splits the 27 variables x,,x,,...,y,.

Proof. The proofis by induction on 7. The result is triv-
ial for » = 1 5o assume that (5.5) has been proved for
r<M — 1. We use the notation preceding Theorem III. 4.
Since S ™/, and hence K™, commutes with the projec-
tions P, P_, and P, it suffices to prove P,K *' =0 or
equivalently

QMKM™M =0 for all m=1,..M— 1. (5.6)

Here Q%" = 77 5o/ — ™ } ™) is the projection in ™!
onto functions which vanish unless exactly m arguments are
onthe + side of o and the remaining M — m arguments are
on the — side. By theorem II1.4
M—m)\ —1
(s
— M—mM—m

sl =) (s7)..
(5.7)

[The second term in (3.15} drops out.] By the inductive hy-

pothesiseachK®'in X n 5 'K ? must be supported entire-
peY

ly on one side of . Furthermore, given any pe Z™, p'eZ ™,

and p"€ 2™~ ™ such that p = p’ Up” there are precisely

o)) =
k np’(k) np'”p"
ways of assigning either a + or a — to each element of p in

such a way that the elements assigned + form p’ and those
assigned — form p”. Hence
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Q(M) E n;le
el
P p”
=85.S, K 8K
n,n, . + -

p'E,f/’ '"p"E,’/” M m p, p

( —‘K p'xK v [see (3.14)]
m ~

1
M mnp.npu +

(m) — 1 M—m\ — 1
=()s™)x(s™ )
m + mm — M—-—mM-—m

Together with (5.7) this establishes {5.6) and hence the
theorem.l

Remark 3. The connectivity of K’ = K {0} implies
that there are no C ~ s in its perturbation series. As a result
we expect K" to be more regular than I"'{, {0]. We have
established this improved regularity for = 1 and 2 in I (see
Sec. V)and I1.

[by (5.4b)].

VI. THE EXISTENCE AND REGULARITY OF "™/A} IN
WEAKLY COUPLED F~(4); MODELS

We now consider the rigorous construction of the gen-
eralized vertex functions of I"*"'{ 4 } in weakly coupled P (¢ ),
models [€P (¢ ),]. The main results of this section will be the
existence of these vertex functions (Theorem VI.1), their reg-
ularity in ¢ (Theorem VI1.4), and the validity of the formula

I'™Mid}y=ri4)4°

for suitable 4 (Theorem VI1.11). Since for large n (e’"¢ "Yis
not well defined even in the free theory, we view generating
functionals like G {J } not as ordinary complex valued func-
tionals but as formal power series in J. This framework was
considered in detail in I, so we shall only outline its essential
features here. This formal power series (fps) is simply the set
of all moments of the generating functional. If %, and %,
are Banach spaces (or more generally Fréchet spacesj we
define the space of all formal power series on %, with values
in % ,to be

?(v@n %2) = )iov//n(ggl» & o)
where A o R |, #,) = #,and for n>1 and

MR\, 4 ,) = {symmetric, continuous, n-linear,
A ,-valued forms on % ,}.

A typical element Fof ¥ (% ,, % ,)is then a sequence {F, } of
A ,-valued, n-linear, continuous symmetric formson # ;. In
theevent that £_, 1/n!||F,||x" has a nonzero radius of con-
vergence r the series 2°_ o 1/n'F, {J,J,....J } converges
strongly to a function F {J } which is analytic for ||/ || 5, <7
If so, we identify the fps F with the analytic function F {J }.
Based on this identification we can define fps operations
such as addition, scalar multiplication, other multiplications
(when % , has the appropriate additional structure, e.g., Hil-
bert space or C *-algebra), composition, and differentiation.
For example, the sum of the formal power series F = {F, }
and G= {G,} isdefined tobe F + G=(F, + G,}. We
showed in Sec. I1 of I that these operations have all the usual
algebraic properties.

Cooper, Feldman, and Rosen 858



As we found in II the choice of space # for a functional
like Ge.# (% ,C) can be delicate with the “right” choice de-
pending on the purpose of the analysis. In this section we
shall first choose # to be %, of (6.2a) when discussing the
existence and regularity of G and I', and then we choose %
tobe the Fréchet space & of (6.19) when discussing formulas
for g;I".

To prove the existence of the (generalized) vertex func-
tions of *I"*V), (we often suppress the N and W) using this
framework we start with the (generalized) Schwinger
functions.

SPID,. ) = (UY {JO}U W (T}),. (6.1)
Here(-), is the Euclidean expectation in an €P (¢ ), theory
with covariance C () [see (1.9)] We remind the reader that
the source terms in U {J } = 2, :4 ‘1J; are physically
Wick ordered [see (2.2)] and that *I" = I" (Theorem I1.3a).
We choose to use U ¥ rather than U because the subtraction
scheme implicit in the Wick ordering results in natural test
function spaces:

B, = {J=,,...JJ y)|J;symmetric, ||/ ||?

= SU.8CtV) = 1,6T)< ), (6.2a)
RB*={A=(A,,.,Ay)|A;symmetric,||4 ||**
= UL eCH)| )= 4% ) <w]. (620)

We prove in Theorem V1.2 that § ¥ is indeed a continuous #-
linear form on % ,, or in other words that

Y= {(S¥eF(#,,C). From Z¥ we may define
GY = InZ%e7 (4 ,,C) by (fps) composition (note that
Sy =1)and A ¥ {J} 7 (#,,#*) by differentiation [see
(2.4b)]. The crucial step in the construction of *I" is taking
the composition inverse of 4 ¥ {J } to get J ¥ {4 }
EF(H* A4 ,). According to Lemma I1.10 of IT this composi-
tion inverse exists provided (64 ¥ /dJ ){J = 0}, viewed as an
operator from #, to % ¥, hasaboundedinverse. That it
does is proven in Theorem VI.3. Then ¥T" {4 } e % (#*,C)
may be defined by "I {4} =G ¥ {/"{4}}
—GJ{J"{A4}]JV{A}. Here the product G }/-J ' is the
{fps) evaluation product mapping #* X 4, into C. Hence
we have

Theorem VL1, In eP(¢),

AY I\ eF (HB,, B¥ is invertible and
I {4 eF (%* Q).

Remark 1. Note that this theorem provides a rigorous
definition and proof of existence of the (generalized) vertex
functions of "I without requiring the existence of
WI'™'{4 } as a complex valued function on % *. When
N =1,2 "I'™{4 } does indeed exist as a conventional func-
tion. This was proven for N = 1 by Glimm and Jaffe!® and
for N =2 by us."®

Theorem VI.2, In P (¢ ),

(TL(E7550%)) | <con TT1771. (6.3)

i=1\=1
Remark 2. Henceforth we shall use ¢ to denote various
(positive) constants like ¢, », which depend on 1 and N but
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are independent of J, etc.
Proof. By Holder’s inequality it suffices to prove

[ %3y, [<eliM |7
for MeC &(R%*). Let
{£.€C & (R?)|aecZ?)

be a partition of unity invariant under lattice translations.
Given any a = (a',...,a* )e(Z?)* define the localization of M

at o to be

M, (Xq5eXy) = M (Xq,0.0X, )iﬁlga.-(x,.).
Then

gty = 3 (flon:6%)

and the proof goes in two steps.
In Step 1 we prove

‘(H(Ma,;‘pk; > <eD (@) [T 1Mo .- (6.4)
i=1 i=1

Here D is the decay factor

D(ay,a,) =3 T exp( —c|al —aZh ), (6.4b)

aTILIKn
1</<k
where ¢ and 7 run over all maps,

i)} —{1. 2,3,k },

a{iN)—={1,2,3,...,n), ali, )#i
This complicated looking decay factor says nothing more
than that there is decay from every variable of every M, to
some variable in a different M, (j5i). It arises because the
subtraction scheme in :¢ *: forces every ¢ in every :¢ ! in
(6.4a) to be connected to some ¢ in a different :¢ *:. We have
already remarked on this connectivity following the defini-
tion (2.5¢) of I It will surface again in the Integration by
Parts Lemma VI1.7.

In Step 2 we prove that the estimate (6.4a) implies (6.3).

Step 1. We apply the cluster expansion?’ to the finite

volume approximations to < H (M, :p*: )> In doing so we

must be careful not to destroy the cancellations built into
1¢*: or else we lose the crucial decay factor D of (6.4). Ac-
cordingly we implement the cancellations by Ginibre’s du-
plicate copy trick. We use a large number of independent
isomorphic copies of our P (¢ ), theory. Tobe precise we use a
multifold theory containing nk copies (labelled by two indi-
ces 1<a<k, 1<i<n)in addition to the original. If ((.)) is the
expectation with respect to the product measure of all the
theories we have

({111 M1.4.0))

a=1i=1

= @D, 1T [T Corbu). (6.5)

Consider the sir:;)le;(ample
(ig2: i4%1) = (87— 20 (). — (7).
- <¢ 2)1 + 2<¢ >t<¢ )1))1'
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Defining
[¢ 2]i = ¢ - 2¢¢l,i - %,i + 2¢1,i¢2,f

gives

(:¢71 :4%), = (([¢°11[4°]2)).

In general
(i)k e () !
of. f=0

T R
= 3 T (=T,

IC{, 2, kime? lem

where 7, c is the set of all partitions of 7 = {1,....k }\[,
and ¢’ =]]¢ (x;).
jer
Thus we define

6L = 3 3 (= iae [l ok, (6.6)

IC(1,2,...k | neP ¢ a=1

where 7 = {1,,...,/,, }, in order to give

(0110 k£)>, =((mmor.te 1)) e

We advise any reader not familiar with the cluster ex-
pansion to read Ref. 20 forthwith. For then it will be obvious
that

(et 1)) = 5 " dotr)

where ({ )), is a finite volume approximation to {{ )),

X is any finite union of closed lattice squares containing
the supports of {{_,|1<j<k,1<i<n},

# = {lattice bonds that do not intersect the support of

any ¢, },

I, ={'CA|I is finite, "'ClInt X, every connected
component of X \ (% \I') intersects the
support of some ¢ .},

sri=(srn={) <" )

0 bexz\I

sothat I"istheset of coupling bonds and % \ I"is
the set of Dirichlet bonds,

is a vector having one component for each non-
zeros(I"), [o{I"), is a measure of the strength of
coupling on the bond bel],

a(l’)

3" = [[9/30 ),
bel”

is the unnormalized expectation in volume
X all of whose covariances (remember the
nk + 1 copies) have boundary conditions
given by o(I'),

ZA = ((l>>l/‘1.01r)h,l’

(N %otr)
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ZA XX = ((1»',‘1 \NX ().

The connectedness properties we have built into the sub-
traction scheme :¢ *: now imply that [for every nonzero
term in (6.8)] every connected component of X \(# \TI')
must intersect the supports of £, for at least two different
values of /. This is proven by applying the argument (modi-
fied appropriately for unnormalized expectations) which fol-
lows the definition (2.5) of ¥T".

We now proceed along the usual cluster expansion
road.”® We use the Kirkwood-Salsburg equations to esti-
mate Z,  y ,x/Z,. We then evaluate the derivatives 8. We
use the Schwarz inequality (with respect to the Gaussian
measure) to separate the interaction from the polynomial in
the fields downstairs. The Gaussian integral containing the
latter is evaluated and estimated as usual. It is important to
observe that in this Gaussian integral two ¢ ’s belonging to
the same factor M, cannot contract directly to each other
without intervening interaction vertices. This is a conse-
quence of the fact that, if : : denotes Wick ordering with
respect to the covariance C (o(I")) of the multifold theory,
then

([ 1)) %0oir)

= (%)k((e¢f(<<e¢f>>;,a(r))7 l’/’));.a(l‘) |f=0(<1>>:‘\’,011"|
o \x 1 u u
= (G_f) (G ((Ce” ) ko)) ™ N kot =0 A et

= ((:l¢* LN %ar) (6.9)
for any ¢ that is independent of {¢,;|1<a<k }.
When this is done we get, as usual,

1< fI(Mu, iR I<ey f[ M, ||, 1¥! = Kemar

i=1 X =1
where the constant K (m,) may be made arbitrarily large by
increasing the bare mass m,. Now we use Prop. 5.1 of Ref. 20
which states that the number of terms in the above sum hav-
ing a given value | X | is at most e*'* |, and Eq. (5.1) of Ref. 20
which states 2|I" | >|X | — nk. We thus obtain

(T (M, i85 I <e [T 1Mo flie ™ ¥,
i=1

i=1
if m, is chosen large enough. Here |X |, is the area of the
smallest |X | occurring in a nonzero term of (6.8).

Now consider any &}. It is “in” (that is, in or at least
i)

adjacent to) some component X, ; of X. Some other a7}
also must be “in” that component. Then
j i)

|od — el | <el Xy

implies
j i)
2 et —adily | <eX Xy
iJj iy
<nkclX |

SO

e Mecenp — 3 |a] —alih )
i
<D(ay,...,a,).
This establishes the estimate (6.4} and so completes Step 1.
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Step 2. We must now show that

3 Diay.a, [IIM, | <clM .

ay,....a,

(6.10)

The proof is similar to the corresponding proof in Step 6 of
Theorem VI. 1 of II. Since D contains a finite number {de-
pending only on k,n) of terms we need only consider one of
them (i.e., one fixed but arbitrary o and 7). We can represent
its contribution to (6.10),

S [lexpl - clat — agd NTIM., .

[+ TYRPRN o, i
by a graph in which

(1)Each [|M_ ||, is represented as a box with k dots {the k
components of «,) on its boundary.

(2) These boxes are arranged in a line in their natural
order.

(3) Dots are joined in pairs by lines representing the
decay factor e ~ 1~ | of the pair of dots (@, o).

(4) Every dot has at least one line leaving it.
By use of the triangle inequality we can bound this graph by
one which in addition satisfies

(5) All lines leaving a dot travel in the same direction.

We express such a graph in the form (v,,4,--4,v,),
where v,€l 4Z*) and the A4,’s are operators between various
15, simply by drawing in vertical dotted lines such as

Thenv, = |M, ||,, v, = ||M, ||,, and 4, is the operator
whose kernel contains everything between the ith pair of
dotted lines. [When an edge crosses several dotted lines we

rewrite it as wi, where 1 is the identity operator on
%

1%(Z?.] In the example pictured

A\ivslpis; 1 Jas 3 Ja)
= exp({ — c{|i; — /| + lii =l
+ iy —ja| + i —Jal + i3 = Jisl]),
Ayi sinsdsilas J1o Jos J3) = 5u. 5.;1', ”M(i,,i,.j,) Il
Ayiy iz J1 J2r J3) = 8, ,85,,6xp( — clis —Jsl)-

The estimate is completed by invoking

(zum ||3)”2<const||M||, (Refs. 18 and 19),

(e eled|<|4|mus.

1A |<sup 3| (..o

LITN A
to estimate ||v;|[, 4; for i even, and 4, for i odd,
respectively. @l
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Theorem VL.3. In an €P (¢ ), model with covariance
C(t), 4 V{J = 0} has a bounded inverse when viewed as an
operator from %, to # *,.

Proof. The (k,k ') entry of A ¥{J =0} is

5 5 J. ™
]n<e i '>r
8J % 8J J=0
— <~¢k Ee"“d’:),(ej”"”)fl
8J% J=0
é .
= (eM{?) i),
871 -0

= (ig*i 19", (6.11)

In a free theory A }{J, = 0} is trivially invertible since then

. k 3
(i¢*: :4* 1), reducestod,, . kIC(t }? . Hence it suffices to
prove that 4 }'{J = 0} is norm differentiable in the coupling
constant A or in other words that

1L Mg M%) <ML IMY,
dA

Now

—d—-(M=¢":M’3¢k'5),

2 (Mig*iM 14

3
- § A,

(M, ¢:M', "),
where 4 runs over lattice squares and

fd X AV(p(x) = Zfd X A4V (6 (X))
A aJ4
is the interaction. So we wish to prove, in the notation of
Theorem V1. 2, that
| d
04,
<C(z€ — € dist (A,QQ})D (ahaz)”Mu, “x NM Ia, Hf

[

Aa=

(M, ¢ M, %),

That is, in addition to the decay factor D (a,, «,) of Theorem
V1.2, we must extract decay from 4 to some M or M’ argu-
ment to enable us to perform the sum over A. This decay
arises from the connectedness between the interaction vertex
brought down by 3 /dA, and M, 1¢*: M i¢*':. Weim-
plement this connectedness by doubling the multifold theory
of Theorem VI1.2. Then every connected component of X in
the cluster expansion that contains 4 must also intersect the
support of at least one £,. The fact that every connected
component of X must intersect the supports of £ o for at least
two different values of / remains true even with the interac-
tion term present: if ([ *},¥)% r, is zero for all small
enough A, thensois (3 /34, {[¢*1,¥)% r-)- W

We now consider the regularity in ¢ of G *{J;t } and
I'{A;t} for JeA, and AcH*. As defined in (6.2) 4, is the
quadratic form domain of € (¢ ), and % * the form domain of
E(t)". Since €(t) =t€ (1) + (1 — t)¥(0) and
€ (0)< € (1)<my  we have the natural inclusions (for
0<i<l)

BECRBY=BICLCRB,=B,CR, (6.12)
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N
where > = & L *(R))ym.By #, = #, we mean equality
i=1

as sets although of course ||f||, increases with # (and similarly
for the equality % * = % ). Furthermore, all the norms ||-|| ¥
are independent of ¢ when restricted to #Z ¥ so that ¥ is a
closed proper subspace of % * for ¢ > 0. This follows from the
fact (Lemma V.2b of II) that the forms C (¢)~' restricted to
the form domain of C (0)~ ' are independent of . Note that
the form domain of C(0)™ ' is just the Sobolev space?’

WIAR>\o) = {fIf.VfeLl?, £ o=0}.
To motivate the regularity results for G and 7" that we

obtain in the following theorem, we consider the special case
of N =1 for a free theory. Then

G=GolJit} = LU,.CtV)= {7
and

F=rfdt} = — {(AC@)7'4)= — L[l4]*
Clearly, G, is defined for JeZ, and we see from (6.12) that
the largest possible domain on which G, can be differentiable
in ¢ (for fixed J) is 4 ,. In fact,
3,Go{Jit } = 1(J,(C(1) — C(0)J) on Z,. On the other
hand, I, is defined for A€ # * and we see from the discussion
following (6.12) that 8,1, {4;t } =0 on #%, the largest do-
main on which 3,1 { 4;0] can exist. In those cases in which
it is possible to modify "'V’ so as to remove the C ~ s explic-
itly {as in the case of @ ) and @ * of I}, we would anticipate
that the modified I" ") would exist and be differentiable in ¢
on a larger space than # ¥ (see Theorems V.5 and V.8 of II).

Theorem VI1.4. For €P (¢ ), models,

@) G¥{Jit}eF (#,,C)andis C = int for JEH ,.

(b) ¥I {A;t }eF (% *,C)and is C * in t for A€ B §.

Proof. (a) The proof that < fI Ji: ¢ ki > is C * in ¢ when

i=1
J, €4 , is based on the formula'?

) 2
3.6 ew = b f dx dy C(L}*)(Wf(tﬁ ))C“
py de dy Clx, y)<x4,( )mxd,ww ))Cm,

where () ¢, is the expectation with respect to the Gaussian
measure of mean zero and covariance C (¢) and
C = C(1) — C(0)<C(1). Thisformulaisapplied repeatedly to

the finite volume approximations to < 7 :¢ ""5) and the
t

i=1
result is estimated just as in Theorems V1.2 and VI.3. Since
the details are so similar to but easier than those of Theorem
V1.1 of I1. We shall not repeat them here.

(b) Define 4 {J;t } = ~'4 % {J;t } where, by an
abuse of notation, € (t) " 'is the continuous extension of our
old Z(t)~' to a unitary operator from #* to #,. Clearly
A eF (B, B,)andd ' =4 ~oC(t)eF (B,,B,) Inad-
dition by Lemma VL.5 {to follow)

A{-;1)eF (BB )
fi_'[';t}&?(%pﬁx)

In essence what this says is that if J is restricted to lie in %
then A {J;z ] is also in # | and furthermore | 4%, has an

and is C *in ¢,

and is C ~in t.
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inverse defined on %, (all in the sense of formal power se-
ries). This should not be surprising since in a free theory 4,
{2} is the linear operator

1
21 0
FW) —

NU
By the definition (2.5¢c) and Lemma I1.2b we then have
Yridi) =GP {J{4 )] —F{A (4]
=GY A Cu) A it} —F {44, [ €)'yt )
=G4 {C ()" At |it] — F {44, '[€(1) 45t |
forall Ae P, = {{4,,...,Ay)|4; symmetric,

A,€D((— 4 +m2)" A, (x,,...,x,) = O if any x,€0} by
Lemma V1.6 (also to follow). Then the facts that
G¥{-;t} | #,isC=intandthatd ~'{-;¢} } €(1)7'D,
is C = in 7 [note that €(1)~'Z,C %] imply that *T" {4; }
is C * in t whenever 4e % ,. Furthermore the derivatives are
continuous in the #Z ¥ topology. A uniformity argument al-
lows us to use that continuity to extend the domain on which
T%{;t]isC>to D, =B n

Lemma VI.5.In€P (¢ ),4 {t} = €(t)™'4 {+t ], uponre-
striction to & |, becomesa C * (int)in ¥ (% ,,% ,) with C =
inverse.

Proof. The claim that 4 {Jit |5 (% ,, % ,)is C>
amounts to the estimate

d*
d k
<[l I g T ]
=c| LMY T DY

The proof of this estimate is the same as the proof that
G¥ {1} | #,is PC =. We need only integrate by parts (see
Lemma V1.7) to cancel the % (¢t) ™" and write J Vas
% (1)% (1)~ 'J'V. This in effect replaces the C (¢ ) propagators
hooked to the first test function by C (1} propagators and
leaves & (1)~ 'J " as the first test function.

The invertibility of 4 and its regularity in ¢ follow from
Lemma I1.10 of IT once we verify that the linear approxima-
tion to A {+;t] (viewed as a linear operator on % ,) has a
bounded inverse. But in a free theory the linear approxima-
tion (6.13)toA {- ; r } istrivially invertible. By continuity in A
it is also invertible in all sufficiently weakly coupled P (¢ ),
models. (See the proof of Theorem V1.3.) [ ]

Lemma VI6. €(t)" ' |} &

NG @) " 4, (2. T"5t))

o is independent of ¢ where

7

Do = {4, Ay)|A; symmetric, 4,€eD((— 4 + m})" ),
A;(xy,...,x;) = 0if any x;€0}.
Proof.ByLemmaC.20fI1C(¢)~"' | & ,isindependentof

t where
D, =D(—A+minD(—A4, +m})
= {4,|4,€D(— 4 + mg)4,(x,) = 0 if x,e0}.

Taking tensor products and direct sums yields the result. @
While Theorem V1.4 assures us that I"is C * with re-
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spect to ¢ it does not provide us with a means for calculating
its ¢-derivatives. In particular the formula

Fidt) = — §Cl0)7 "y + A4y + 24,47) + T, A?

(6.14)

of Theorem III.1 cannot be true for all A€ Z 3. All of the 4 ”'s
are invariant under translations along 0. So every nonzero
A ? fails to have the decay required to be in % . Furthermore
C(t)~'249C(r)~ /2, which in a free theory is C(r) ~ '/
CC(t)~ 2, is too singular near o to be locally L 2. Hence in
(6.14) we must restrict the class of allowed test functions 4
sufficiently to ensure that I, is globally L ! and locally suffi-
ciently regular to allow smearing with A 9. To make these

requirements more precise consider the linear approxima-
tion I', , {0} to I'4;. By Theorem II1.3b

T 0) =8 7"y = [Gi6=:1670)1 7.

In a free theory

T40,{0} =(1)7'5, (C(t)“) = %)y
In an interacting theory, denoting
(:¢1i7:) — B(t) 4 by 3,5, we have

—"T, . [0}4; = [%(t) + z] 4

[1+% ’2] %z),q ;

=n§=:0(-1)~[( 9;(:)—12) ‘é(t)"'A]i.

(6.15)

We can neutralize the final %(z) ~' simply by requiring 4

to be in

N ®j
N ,=e C&R\0)",
j=1

forthen %(r) ~'A isindependent of 7 and may be viewed as
just another test function in .#",. The typical behavior of

% () ~'Z may be determined by using integration by parts.
Lemma V1.7. (Integration by parts with physical Wick

ordering). Let (-) be the expectation in an €P (¢ ), model with

covariance C. IfF,A4,,...,4,, are polynominals in the field then

(s(c-‘¢)ﬁA<sF>

I F> + (i1 4: Z)

(6.16)

where the meaning of the physical Wick dots depends explic-
itly on the indicated factorization, i.e.,

d g ™
a:u' 1 aﬂ m (eﬂﬂ’)
In particular if any B; is independent of 4,:B,---B,,: = 0.

:‘Bl"'BmE =

pi=0

Remark 3. This lemma is very similar in spirit to Theo-
rem 3.2.2 of Ref. 22 and its proof is a straightforward appli-
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cation of Theorem 3.1.1 of Ref. 22. Note the compatibility of
physical Wick ordering with the operations of integration by
parts and differentiation with respect to ¢: for instance if in
(6.16) F= :7B;: then we have

8
B,:.

‘S¢ i=1 j 121 1];1 !

Applying this lemma to (€ ~'3),,, for example, yields

(B ~'Z)y = 1GC 1B )X )C '8 )ixa): 16 (1))
— 36, — X J (V" (x)): B (3)1)

+ 4GV )V (x0)i 18 (3)1). (6.17)
Equations (6.15) and (6.17) suggest that we choose the same
space for the I, ’s (essentially the J;’s) and the €'(¢)™ 4,%s
and that a typical “function” f(x,,...,x;) in that space be of
theform 2 __,.6,f, (x,), where Z'is the set of all partitions
of {1,...,i}, 8, is a product of § functions forcing all variables
within each set of the partition 7 to be equal, x,. has one
variable from each set of the partition 77, and £, €L ?(R*' ™) for
all p < 0. For example if 7 = {{1,2,3}{4}} then

8o fr(x, ) = Blx; — x,3)00x; — X3)f, (x1,%4)-
In order to separate local from global regularity we take
advantage of the amalgam / (L ?) spaces.?® These spaces
have the norms

Wl = [ Shearte]”

where the sum runs over a covering of R? by unit lattice
squares. (Make the obvious modification when ¢ = «.) We
require that each f, be in the Fréchet space determined by
the increasing family of norms { |||} ., [p = 1,2,3,4,...}. More
precisely the space we will use for the J’s and € (¢)™'4 s is

(6.18)

D = ((Jy.-o)y |J;Symmetric,

= 2 aﬂJi,ﬂ'(xﬂ')’lJ |p;l < OOVP< 0 }! (6198)
we P’
where
Vi, = E 2 Wiwlls
i=1 gep!
and

Ul = 3 Sheati,

with A running over a covering of R* by unit lattice squares.
Using the / 4(L ?) mapping properties of C'it is not hard to
check that 2 C # , and that {4 ?) is indeed in the dual space

D* = {(A,,....Ax)|4; symmetric, Jp < w03|4 |}, < o],
(6.19b)

where
|4 |3 = supsup |74,]|, -,
i ge?!

415, = St}psgplxmi lprs

and 74, is defined as follows.
Definition. Given any function 4, of / variables x;€R?
and any partition 7€ %' we define 74, to be the function of
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|| variables obtained from A, be setting all variables in each
set of 7 equal. For example if 7 = {{1,2,3},{4}] then (74,)
{(x,y) = A4lx.x,x, y). We are using a somewhat schematic no-
tation. & * is really obtained by completion from C * func-
tions and consists of functions that have appropriate L ?
properties with respect to measures like £ __,.6,.dx,--dx;.

Remark. For I"? it is possible to replace 2 by the Ban-
ach space

% = {(JI!JZ)HIJIH4/3;1 < w,J, symmetric,
J2 = 8#, J2,1r, + JZ,rr,’
”Jz,ﬂ. ”2;1 < °°’||J2,rr, “4/3;1 <o}, (6.20)

where 7, = {1,2} and 7, = {{1},{2}}. In the following
proofs we shall identify those arguments that must be modi-
fied to effect this replacement.

We pause here to comment on the strategy involved in
choosing different spaces in which J is to live (such as %,
and Z). In general, if G {J } = G ¥ (J} is a functional (or
fps) on the Fréchet space £ then8G /87 {J }eZ % so that we
expect A {J } to map into the dual space

JeZ—A{J} = €T+ F{J) (6.21)

and, if this map is invertible, then the Legendre transform
I'" {4} of G is a functional (or fps) on Z*. For certain pur-
poses Z”* may be too small (for example, it may not contain
A°). We can then try cutting down £ to £&°,C & in order
that 2% DO Z7* be large enough (think of £ as #, and of
&, as D). By itself such a reduction of the space is too
simple-minded to work since the map (6.21) restricted to &7,
will certainly not map onto Z°% and we lose the crucial in-
vertibility of 4 {J }. However, if we have the additional infor-
mation that the perturbation Fin {6.21) is sufficiently regular
to absorba ¥ ~ ' and that ¥ ~'Fis “smal},”then 4 will map
&, onto € &, This is the point of introducing the variable
A {J)=% ~'4 {J} which is then an invertible map of 27,
onto itself (the proof of this is the crux of the argument!). Asa
result we obtain a Legendre transform I” {4 } defined on

€ 2, with {a priori) 8, { A |€{€ Z°,)*. But

A€E X yode Fyde X y=8, A eZ’, (since 8, is
essentially J) and so 8, 1" {4 }+4 ®is well defined if 4 %€ 27
8, [A}+A° is well defined if 4 °c 2°%.

_We shall henceforth denote the map % (¢)~'4 ¥ {J; }
by 4 {J;t | and its composition inverse (whose existence we
prove in Theorem VI.11) by J {4;z }. Our battle plan is as
follows. In Lemma V1.8 we prove that 4 {J;t |eF(Z,9)is
C = in ¢. In Lemma VI.10 we prove that the linear approxi-
mation 4, {0;t } to 4 has a continuous inverse as a map from
D to 2. In Theorem VI.11 we combine the results of Lem-
mas V1.8 and VI.10to prove the validity of the formula (6.14)
for I' {4;t .

Lemma VI.8. In€P(¢),, A {Jt }eF(D,D)is C = int.

Proof. The cornerstone of this proof'is the estimate that
for every n, N, and p, < p, < o there exist constants c,e (pos-
sibly depending on p;,n,N) such that

1ZY, 5 0}E ) T B
= |<( é Ct)~ IJ(‘.IUE¢ i )(J(:)¢ lz)J(I:l)¢ i,,£> (6.22)
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<c ¥ maxe” iy, s T |y, JU|
H 3
a,< 4"2<m<n 1 oh P]m=2 m im 1P

where the ¢,.’s are not summed over
4, =4, ,X-X4,,
with each 4, ; a unit square in R?,
d(4,4,)= 3 min distd, 4,
JES <
The decay factor controls the sum over 4, so that
8,72 % (0} (1)~ Y 2. |

< T V.
m=2

Thisestimateensuresthat € (1)~ 'Z J{J;t e 7 (Z,2). Since
CU)DCRB,—>BFCD*, it also ensures that Z ¥
{J;t }eF (D ,2*) and hence that Z ¥ {J;t }e.7 (D ,C). The
appropriate modification of Theorem V1.4 provides an esti-
mateon (8" /dt* € (t)"'Z e s, analogous to (6.22). It en-
sures that €'(r)~'Z V{J;t } and Z"{J;t | are C = in 1 as ele-
ments of #(Z,) and F (% ,C), respectively. The
conclusion of the lemma then follows from

Cl) "G, (st} =€) Z e }/Z2 7 (Tt )
and

A It} =F YL ) 'G, {Jit ).

[See the definition (2.6) of F and Lemma 11.2.]

We now prove the estimate (6.22} {uniformly in the vol-
ume of a volume cutoff theory). Without loss of generality we
may assume that eachJ " is nonzero for only one value of i,,
and has support in a single hypercube 4,,. The estimate
takes four steps.

Step I. (Implementation of the : : subtractions by Gin-
ibre’s duplicate field trick) Just repeat the analogous step of
Theorem V1.2

Step 2. [Use of integration by parts to get rid of the
C(t)~"’s] We repeatedly apply (6.16) until all of the C (£) ™ "s
of (6.22) are gone. This produces a sum of terms in which
each argument of J " is connected by a § function either toan
argument of a J "™ with m > 1 (m % 1 by Wick ordering) or to
an interaction vertex.

Step 3. (Application of the cluster expansion) Apply the
cluster expansion as in Theorem VIL.2. [See (6.8).]

Step 4. (Estimation of the cluster expansion) The esti-
mation procedure is again essentially the same as in Step 1 of
Theorem VI.2. The only real difference is that we now wish
to end up with a different norm on the J*"s, Consider one
term

s(I™
i ZA \X,0X

)
do(l 8" ()5 ar
Z,

from the cluster expansion. Here ¥ is a polynomial in the
fields and contains

() [T 78], (recall that [¢*1,, is just i *: re-

m=2

written with duplicate fields; here i/, <i,, with strict inequal-
ity if some ¢ ’s have been differentiated in Step 2),

(ii) possibly some interaction vertices (produced in Step
2) and
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(iii) a delta function propagator joining each argument
of J ! either to an interaction vertex or to an argument of a
Jim w1th m> 1.

It is possible that more than one argument of J " is
connected to the same interaction vertex or J f:’ As before,
the Kirkwood-Salsburg equations are used to bound
Z, xox/Z, by e""X; the derivative d " is evaluated; the
Cauchy-Schwarz inequality is used to separate the interac-
tion from the polynomial in the field downstairs and the
Gaussian integral containing the latter is evaluated as a sum
of graphs. (Note that as in Theorem V1.2 Wick ordering
ensures that no two fields belonging to the same J** can
contract directly to each other without intervening interac-
tion vertices.)

Each graph in this sum is an integral whose integrand
consists of our J*”s, the § function propagators of Step 2,
some d "C propagators from the evaluation of 7, and some
C propagators from the evaluation of the Gaussian integral.
Do enough of the integral to dispose of all the delta functions
including those built into the J"”s with m>2 by the defini-
tion of Z. In general this will result in terms with two or
more arguments of J "’ set equal; we denote the resulting
function by 7,J " as in the definition (6.19b) of Z*. So a
typical integrand is of the form

(,,.J(l))(,,.Jtn) H ( Jim, )(J("l)

m=2
where G is the value of a graph which contains all the C’s and
d7C’s and which has arguments of the J * s as external var-
iables. (Do not forget that we have already been through a
Schwarz inequality — that is why we now have 21 J’s.) Each
integration variable can appear simultaneously in

(i) one of 7/} and 7 J Y,

(i) one of J f’,z JOD T

(iii) G.
Any such integral may be estimated by the following gener-
alization,?®* of Holder’s inequality.

Lemma V1.9.If fdu, = 1for all k in the finite index set
K, then

du, (x 25 <gnll o
fk _dmte]e gl

where K,, CKx*"

La

m> kek,, q,,,

= {x, |keK,, } and for each k

We simply assign ¢ = p] to n',./“’ and mJ Y, g =p, toall
the Jﬂ."" . 'sand J{™ , 's with m>2 and

q =P3=(1/P| l/Pz)_l to G (recall p, > p,).
Since ||G ||, <ce®*| = KTl by standard cluster ex-
pansion techniques we now have, all together,

l " Z, xox
do(l")8" <)% oir) Z,

O(1)(X | — K (mo)| I"| m * Jim
<ce IX J H |XA IP:
Continuing as in Theorem V1.2 we have
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IZ ((g(t)—ljtlb)J(ll J(nb

<cze0“"xl K (mo)| | 'X J(l)lp IX
|

— [ X {min m
<ce lad 1% 1T ot i-m’l,,z-
= 2
Now for each the component of X containing 4, ; must also
containa 4, ; for some m > 1 so that for all j, dist

(4, ;,4,,;)<c|X |- Hence mind (4,,4,,)<¢|X | i, and
(6.22) follows. [ ]

Remark 5. For the special case of I"? it is always possi-
ble to assign, in Lemma VL9, ¢ = 4to G, J ¥(x, y) and J {"(x),
g=2 to JV(x, x) and J {7, 5, for all m>2, and ¢ = § to J |
andJ {71y 2y, for all m>2. This is because J {'(x, x) occurs if
and only if both arguments of J{ are connected to the &
functions of a single J 17}, ,; with m>2. Thus we may choose
the space of J’s to be the Banach space Z® of Remark 4.
Moreover, it follows by continuity in the coupling constant
that 4, {0} has a continuous inverse as a linear transforma-
tion on Z®. For the general case N > 2 we establish the
corresponding invertibility in

Lemma V1.10. A,{0}: £ —% has a continuous
inverse.

Proof. Now (see the proof of Theorem VI1.3)

A, (0} ={(Bl0) "1 1):671).

Integrate by parts (using Lemma V1.7) sufficiently often that
% (¢)! disappears. Denote by S those arguments of :¢ *:

that contract directly to arguments of :¢#: the latter being
denoted T'(so |S | = |T'|). The remaining arguments of :¢ “:
(if any) naturally partition themselves with all the arguments

in each subset of the partition contracting to the same inter-
action vertex. Thus

IJ{O}aﬁ_—— z z |S|!5s.r
SCilwa) me2S
TC{1-8}
<EII(— 1)y|s, v ir: 5¢T's>, (6.23)
yem

where S’ = {1--a}\S, T' = {18 }\T, 851 is a symme-
trized product of delta functions forcing each argument of S
equal to a different argument of T, and §, is a product of
delta functions forcing all arguments of ¥ to equal the argu-
ment of VIV, which is the || th derivative of the interaction.
Note that, thanks to the Wick ordering, if either S ' or T’ is
nonempty they both must be nonempty. We can thus rewrite
(6.23) as

L0l =F+ 3 1S1sr 3 (T8 )for
sci,..a} s> Arem
+
FS_]L---ﬂI

where F™™) is the free theory value of 4, given by (6.13) and

for —( I1(— Dlrv 75 ™)

Now f, ;- is a regular function except for singularities at
coinciding arguments that are at worst powers of logarithms
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and has exponential decay from each argument of 7’ to some
argument of §'' and vice versa. Furthermore, again thanks to
the Wick ordering, there is no probelm in setting equal var-
ious arguments of T'' to givef,, ;-7 (with the 7' acting on the
arguments in T}, as is necessary when 4, {0} acts on an
element of Z. Thus for any p < «, there exists a constant c,
(depending only on p and N ) such that

s SrrXa, ™ <A Eas_a., (6.24a)
provided the coupling constant A<A,. Here 4, and 4, are
hypercubes giving the localizations of incoming and outgo-
ing variables of £, . and E, ,_ is an exponential decay fac-
tor obeying

sAqu ;} Ey 4. <c< . {6.24b)
To prove that 4, {0} has a continuous inverse we use a Neu-
mann expansion about the diagonal operator F";

J(H[JJ{O}—l_ (N)""]J(Z)
=S -0 —TJI| T IS8
n=1 al!x—l o
S C{l..a;}
—+
T’C“--~“i+1]
(I8 Yorgll S 602}
re?>! a,+1' P ALER
(6.25)

where the ,’s are “integrated over” and where we have in-
serted the representation for J @ as an element of &.

It suffices to show that given any p, < « there exist
constants ¢, p, < « (depending only on p,, N)and A, (de-
pending only on N and not on p,) such that the right hand
side of (6.25) is bounded by c|J % |J?| whenever
0<A<A,.

Pick any # > 0. Corresponding to that » there are in
(6.25)atmost N { N 2V2N | 2V |}"{| V| }=c,c} terms, each
consisting of a product of numerical factors (no larger than 1
in magnitude since {1/a,!)|S;|!<1) and an integral

Jo 1"'[ [5ST (H‘S ) T ]{6 e Lk

Do enough of this integral to get rid of all the & functions.
This leaves us with a true integral whose integrand consists
ofone miJG!, n f, .m’s,and one J) . The integration
variables which appear in 77{J ;' may also appearinJ§
anduptoN f .#’sin total. Any single integration vari-
able which does not appear in 77{J |}) may appear in a total of
(N + 1) kernels (J 7~ and/or f, ,.7’s). Hence we may
now localize each integration variable by 1 = 2, y, and
apply Lemma V1.9 with ¢ = p;] assigned toJ "),

g = p,=(N + 1)p, assigned to J?, and to those {up to N)
f,,.r7!’s having variables in common with J and

g = N + 1 assigned to all remaining f, ,..7;’s. The sum over
localizations may be controlled by (6.24b) and we are left
with
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V4, (0}

w
< Z 1]‘”};‘;C1c'2’/i i cf\liu 1ip, C%;T\J(Z}lwﬂu 1), -

n=1
This does indeed converge to give the desired bound pro-
vided A <A,=min[4,, K,cy, ,)7']. Note thatc,, , , and
hence the condition on the coupling constant are indepen-

_F(N)"]J(2)|

dentof p,. [ ]
Theorem VI.11. In €P (¢ ), we have, for AeN_ and N>2,
I{d;t}y=T,{41}4° (6.26)

Proof. Suppose A€.#",. Then (6.26) is a consequence of
three facts. Firstly, as in Theorem V1.4, with J =4 ~'

{4t}
=2 (610 M1 )it} — L) T (€10 4 11])
=GY{T(E1) st}
since € () '4 =% (1)" 4.
Secondly, by (2.11),
"{J}=0,G{W '}
=G(W T} +G, (W I }W ). (627)
We compute the first term using (3.2),
G{W )= —iC G, (W T} ~G,[0})
= —4C7 4 +AVAT + 2474}

As for the second term, we have, by Lemma I1.2b,

G, W )= 3 AW ;!

N
I=0

and from the definition

Wi'= ( )5 jexp( — ngl A ?,f"/n!)

SETAT L g

f=0

, k—j(k .,
Wi'= _.-;1 (I)W],H,AO
Hence the second term in (6.27) is
k
- ([>F,{A W{J}}(W“)U‘IWJ;‘_,A W

- (]:)Fk_,.{A W14,
and so

G¥{J})= —1C NAY +APAY +24 74T}

_(’lf)pk_,.u W(T})A Y,

This formula is valid for all Je by Lemma VL.8.

Thirdly, by Lemma I1.10 of I the composition inverse:
J{A)tod{J} existsin F (D, D) since A (JJeF (2, 2)
(Lemma V1.8) and the linear approximation A,{0} hasa
continuous inverse on & (Lemma VI.10).

Putting all three facts together we have that for
AeV' , CD
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I {4;)
. k .
= 10 et Aty + 24,431 = (VF_ 141,40
=I,A9
where we may drop the first term for 44", [see (3.17) of I]
and where we have used (the analog for *I" of) Theorem
I11.3a. ]
We note that formula (6.26) is valid only for a very re-
stricted class of test functions 4. This class may be extended
a‘bit beyond.#”, by continuity but certainly does not include
A°. Hence we may not iterate this formula, as it stands, to
evaluate higher derivatives. However, if we choose a se-

quence {£, } of functions in C §(R? /o) that are bounded by 1
and converge pointwise to 1 then

ai,n E‘A ?(g- :i)e%a

and

I'{4;t} = lim a,, I, {4,1) (6.28)
may be iterated to evaluate higher derivatives since the ap-

propriate limits are uniform in z. We shall exploit (6.28) and
its iterates in our proofs® of the irreducibility properties of

r'and r*.
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We show that the residual symmetry group after spontaneous symmetry breaking must either be
the holonomy group H of the connection or contain H as a subgroup. Since H is a connected,
normal Lie subgroup of the gauge group G, knowing the dimension of H is often sufficient to
determine H itself. We develop an algorithm for determining dim H for any gauge theory given
the structure constants of the gauge group. This algorithm is then applied to a fiber bundle with

an SU, or SU, gauge group.
PACS numbers: 11.30.Qc, 02.20. + b

I. INTRODUCTION

Gauge theories play a key role in our understanding of
all four of the basic interactions of physics. Electromagne-
tism is the prototype gauge theory with an abelian U, gauge
group.' In more recent years the weak interactions have also
been understood as a gauge theory through the work of
Weinberg? and Salam,* unifying the weak and electromag-
netic interactions through an SU, X U, gauge group. The
strong interactions also appear to be described as the color
SU, gauge theory,* and even gravity is the gauge theory of T,
or the Poincaré' group as shown originally by Utiyama’ and
more recently by others.®”’

The most natural and most elegant mathematical de-
scription of these ubiquitous gauge theories is through fiber
bundles. A principal fiber bundle can be thought of as a gen-
eralized topological product of a base space such as four-
dimensional Minkowski space and the structure group. In
more detail, a gauge is a global section and a gauge field is
identified with the connection 1-form in a principal fibra-
tion. The Yang-Mills field strengths become the coefficients
in some basis of the curvature 2-form. This description goes
back to Trautman.® Detailed definitions can be found in var-
ious texts.”"'! Because they are such a natural description of
gauge theories, fiber bundles are rapidly coming into physics
literature. For example, Wu and Yang'? have used fiber-
bundle concepts in their treatment of magnetic monopoles,
and Cho’ has used fiber bundles in his treatment of gravity as
a gauge theory.

Spontaneous symmetry breaking and the Higgs"®
mechanism for generating masses for gauge fields is a crucial
ingredient in modern gauge theories. This plays a key rolein
the Weinberg-Salam unification of electromagnetism with
the weak interactions. It also plays a key role in the grand
unified theories'* which promise to unite the electromagnet-
ic, weak, and strong interactions under a single large group
such as SU;. Extended N = 8 supergravity'® or some larger
scheme holds the promise of perhaps uniting gravity with all
of the other interactions. Here, we are faced with a large
graded Lie algebra with probably sequential symmetry
breakings first to something like SU; and then down to what
we actually observe. Spontaneous symmetry breaking is usu-
ally put in by hand, and this suffices for small gauge groups.
For the large complicated groups encountered in various
unification schemes, however, this is quite unsatisfactory,
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and some guidance from the underlying fiber bundle struc-
ture would be quite useful. We hope to shed some light on
this problem in the present paper.

Once we appreciate the importance of spontaneous
symmetry breaking and the naturalness of a fiber bundle
description of gauge theories, we are led to investigate spon-
taneous symmetry breaking in fiber bundles. No satisfactory
theory has emerged yet, although preliminary work by
Mayer*%!¢ suggests that the problem involves a description
of quantized gauge fields in terms of operator-valued distri-
butions with the Higgs mechanism involving affine vector
bundles. More recent work!” has centered on dimensional
reduction of higher-dimensional spaces. The problem of
working out the details of spontaneous symmetry breaking
in a fiber bundie with full mathematical rigor is clearly a very
difficult one. It is certainly worth doing, however, since the
underlying fiber-bundle structure is there whether we realize
it or not. Properly taking into account this structure will
greatly clarify spontaneous symmetry breaking and is cer-
tainly superior to putting this breaking in by hand. An exam-
ple of a similar clarification is the realization that the *“vector
potential” 4, in electromagnetism is really the coefficient of
a connection form in a principal fiber bundle. This realiza-
tion leads one directly to the peculiarities of a Bleuler—-Gupta
quantization scheme.

In this paper, we sidestep the major mathematical diffi-
culties and address ourselves to the problem of what can be
said about the observable effects of spontaneous symmetry
breaking in a general gauge theory, taking into account the
fiber-bundle structure but not doing the spontaneous sym-
metry breaking in the fiber-bundle in detail. We will need to
know only that the fiber-bundle structure exists and that
spontaneous symmetry breaking has taken place. We will
show, in fact, that the residual symmetry group after sponta-
neous symmetry breaking must either be the holonomy
group of the connection or contain that group. Mayer'*'®
mentioned this possibility. Loos'® discussed the internal ho-
lonomy groups of Yang-Mills fields but did not consider
their role in spontaneous symmetry breaking.

In Sec. II below, we define the holonomy group of the
connection and discuss its role in spontaneous symmetry
breaking. We calculate the holonomy group of the connec-
tion of a principal fiber bundle with SU, and SU, structure
groups in Sec. III and discuss our results and conclusions in
Sec. IV.
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Il. HOLONOMY GROUP

We can define the holonomy group as follows: Let
A = (P,G,B,) be a principal fibration with structure group
the Lie group G, base space B, and projection 7. Alsolet I"be
the connection and £ an associated vector bundle. Any path
¥{t) in B (a piecewise smooth mapping of the interval [0,1]
into B ) can be lifted to a horizontal path Z (¢ ) in P. The path y
and the connection I” determine an isomorphism of the fiber
E , onto the fiber E;,,. If y is a loop so that {0) = (1), the
two fibers coincide and the horizontal lift induces in P a fiber
isomorphism of the fiber over b = #(0) onto itself and a linear
isomorphism of E,, onto itself. The set of all such isomor-
phisms is a group called the holonomy group of the connec-
tion at b. If b, and b, are two points in B which can be joined
by a path, the holonomy groups at these points are isomor-
phic, and it makes sense to speak of the holonomy group of
the fibration. The restricted holonomy group is the subset of
the holonomy group obtained by considering only null-ho-
motopic loops.

An important property of the holonomy group is con-
tained in the following theorem from Kobayashi and No-
mizu'' and others. '

Theorem: Let P (B,G,7) be a principal fiber bundle with
projection 7 and structure group G whose base manifold B is
connected and parcompact (admits locally finite open cover-
ings). H (1) and H °(u), uep, are the holonomy group and re-
stricted holonomy group of a connection I” with reference
point «. Then (a) H %(u) is a connected Lie subgroup of G; (b)
H°u) is a normal subgroup of H (u), and H (u)/H °(u) is
countable.

In our work we will take the base manifold B to be
Minkowski space, since we are interested in gauge theories
defined over Minkowski space. Minkowski space is a metric
space, and all metric spaces are paracompact® so that this
theorem applies to our situation. Also, we need not distin-
guish between H (u) and H °(u), and the holonomy group is a
Lie subgroup of the gauge group G. In the following, we will
also restrict our attention to semisimple G, since Loos has
pointed out that for a nonsemisimple gauge group G, one
may have G an invariant subgroup of H, rather than H a
subgroup of G

We now want to show that the holonomy group H as
defined above is the smallest possible residual symmetry
group of the theory after spontaneous symmetry breaking.
Let ¢, (r) be an n-component real field transforming as a re-
presentation r of thie gauge group G. ¢; is the cross section of
an associated vector bundle associated with the principal
fibration via the representation r. Assume that spontaneous
symmetry breaking takes place {not necessarily by the Higgs
mechanism] so that one or more components of ¢, develop a
nonzero vacuum expectation value. The vacuum will then
no longer be invariant under the full gauge group G, and we
can define a residual symmetry group R which is a subgroup
of G and which leaves (0|4, |0) invariant. We wish to get
some handle on R.

Now using the connection, we can execute a parallel
displacement of multiplets around a closed loop in event
space (Minkowski space) from x * back to x *. Doing this for
all closed loops in event space results in a group of linear
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multiplet transformations at x *. This group is a representa-
tion of the holonomy group H (x *), from the above defini-
tions. Let the specific multiplet, which is to be carried
around the closed loop, be the ¢, (r) mentioned above. The
resulting holonomy group structure has to do with the prop-
erties of the connection but has nothing whatever to do with
whether or not ¢; has a vacuum expectation value. Thus the
holonomy group will certainly leave (0|g, {0) invariant. In
fact the physical residual symmetry group R of (0|, |0) cer-
tainly must contain the group obtained as we carry the
space-time dependent quantity (0|g, |0) around all possible
closed loops in the event space. The latter, of course, is just
the holonomy group of the connection H. R may have addi-
tional symmetries beyond those defined by the physical
transport of (0|¢, |0) around closed loops so that we have
shown that HC R. From the above theorems, H is a Lie
subgroup of the gauge group G go that we have finally

HCRCG. (1)

Thus the residual symmetry group R after spontaneous sym-
metry breaking must be at least as big as H. These results are
independent of the initial spontaneous symmetry breaking
mechanism. In a specific gauge theory, if H turns out to be
sufficiently large, then R is strongly constrained. We will see
an example of this below for G = SU,,

We are led by the above results to calculate the holon-
omy group of the connection for fiber bundles with various
interesting structure (gauge) groups such as SU, or SU;. The
following theorem due to Ambrose and Singer (cf. Kobaya-
shi and Nomizu'!) will be useful.

Theorem: Let P(B,G,r) be a principal fiber bundle,
where B is connected and paracompact. Let I” be a connec-
tion in P, {2 the curvature form, H (u) the holonomy group
with reference point ueP, and P (u) the holonomy bundle
through u of I'. Then the Lie algebra of H (u) is equal to the
subspace of g, Lie algebra of G, spanned by all elements of
the form £2,,(X,Y ), where VeP (u) and X and Y are arbitrary
horizontal vectors at V.

Using this theorem, we can calculate the Lie algebra of
the holonomy group H and hence the holonomy group itself.
Instead of doing this, we shall do a much simpler calculation
and find the dimensionality of the Lie algebra of H. Finding
dim H should suffice in most problems of physical interest
since H is a Lie subgroup of G, so that knowing dim H is
almost equivalent to finding H itself.

Another way of stating the above theorem'®?° is that
the Lie algebra of the holonomy group at « is generated by
F,,(u) and all its covariant derivatives D, F,, (u),
D,D,F,,(u),.... F,, is the coefficient of the curvature 2-
form (the gauge fields). Now we can write

F, =4, —a4,r,—[I,.I,] (2)

where F, =F, ' I;and I, =TI’ . These basis vectors /; in
the fiber bundle obey

[li’lj] =fijk Ly (3)
where f;; are the structure constants of the structure group

G. i,jk = 1,...,n, where n is the dimensionality of the struc-
ture group G. The covariant derivative of (2) is
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D.,F, =48,F, —[I, F,. ] (4)
The second covariant derivative can be written as
D,D.F,,

=050, F,, — (05T ,,F,,]
- [ra’aBF;w] - [rﬁ’aaF,uv] + [FB’[FG’F;W]]' )
(5

Now in order to calculate dim H, we need to find the number
of independent vectors generated by F,,,, D F,,,
DgD,F,,,... in the n-dimensional space defined by the basis
vectors /; of G. We shall refer to this as “i space.” Clearly

dim H<n since at most n independent vectors can exist in an
n-dimensional space. Now taken as vectors in i space, (2), (4),

and (5) determine different independent directions given by

F,=F,'l, '

[Fy’FK/I ]Eny]Fufﬁjklk’ (6)

[Fv’ [r/.L ’Fx/» ] ]EFm{j r,uif;'jkrvlf‘lkqlq’
since partial derivatives d, do not rotate vectors in / space.
Thus dim H is simply the number of independent vectors in
the sequence in (6). This clearly depends strongly on the
properties of the structure constants f;; * of the gauge group
G. Now it is important to note that for our purposes F,,, ‘
represents a single vector in J space rather than a large num-
ber as u,v range over 1,...,4. The reason is clear from the
work of Loos'®: If we carry a field ¢, which transforms as
some representation of the gauge group G, completely
around an infinitesimal parallelogram, we get an infinites-
imal gauge transformation

W' =[1+iF,, (dx"d'x" — dx*d 'x*)]¥
=[1+}F, df 1Y, (7)

where we suppressed the / indices. Thus F,,’ df #* can be
taken to be an infinitesimal generator of the holonomy group
rather than F W" itself, i.e., F,, " always appears contracted
with df #*. Appending handles on the infinitesimal parallel-
ogram brings in the covariant derivative terms and similar
remarks hold for I',, *. Thus we can rewrite the sequence (6)
as

F\F'Cf FT A4, (8)

where F'=F',, df*”and I'' = dx*I’,". Our job then re-
duces to finding the number of independent vectors in the
sequence (8). This will be dim H. Note that f;, * can be used
to define a generalized cross product and (8) can also be writ-
ten as

EFXIFXTYXT,... (9)

The number of independent vectors in the sequence (8)
can be found by considering the sequence

Cify=If, TFCf=Tf . (10)

orin general (I'f) ™ for progressively larger m. Thefirst m for
which (I'f)™ can be written as a linear combination of pre-
ceding members in the series defines the dimensionality of
the holonomy group, where dim H = m. Thus the equations
which must be checked for progressively larger m are
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m=2 ([f}=AI%},

(Ify=B(If) I?

m=4 ([ff*=Cr*([f}?+DI*s,

(LfY = EL* (If) + FL*(If), (11)

where ' *=r""T,, 6=06;,and 4,B,... areconstants. Theabove
defines an algorithm from which dim H can be calculated for
any gauge group G by plugging in the appropriate structure
constants f;; “. We will now apply this to G = SU, and SU,
in the following section.

m=3

m=35

lll. dim # FOR SU, AND SU; FIBER BUNDLES

SU,: For G =SU, we have the structure constants

f;'jk = €;jk» (12)
which satisfy the identity
f;'jk fqu E‘Silajq - 5iq5j1- (13)
Let us first look at the m = 2 equation from (11). This is
Lfiud fu, =A1“25jq. (14)
The left hand side is
- Firl((sil‘sjq - 5!’«151'1)5 - r25jq + LI, (15)

so that (14) is not satisfied. For n = 3, using (12) and (13), we
can show

(If)P=—TT"f,,. (16)

Thus the (I'f )’ term is a multiple of the (I'f)! term and the
m = 3 equation of (11) is satisfied for SU,. Thus dim H = 3
for G = SU,,. Since SU, itself has three generators, this is a
reasonable result.

SU,: The fully antisymmetric structure constants of
SU, can be taken to be?'

fin=1, Sra1 = fra6 = fos7 =f345=£, (17)

Sise =frer= — 4, Sass =fors = (\/3/2)-
The overall normalization of these is irrelevant since arbi-
trary constants appear in (11) in any case. We now have eight
generators and the calculation is somewhat more difficult.
We find that the m = 2-7 equations of (11) are not satisfied
for the structure constants of SU,. The m = 8 equation is
satisfied as we might expect. Thus we have eight indepen-
dent vectors in the sequence {8) and dim H = 8 for SU,. [To
show that dim H = 8 for SU,, it is actually sufficient to show
that the m = 4 equation in the sequence (8) cannot be satis-
fied. This implies that dim H>5. Since H must be a connect-
ed, normal Lie subgroup of SUj,, and since the largest sub-
group of SU,, other than SU, itself, is SU, X U, with
dimension 4, H can only be SU, itself with dimension 8.]
Note that for large groups and for large m in (11), the number
of arbitrary constants 4,B,... which must be found becomes
large and the problem becomes much more tedious.

V. DISCUSSION AND CONCLUSIONS

We found in the preceding section that dim H = 3 for
an SU, gauge theory and dim H = 8 for an SU, gauge the-
ory. The holonomy group H must be a connected, normal
Lie subgroup of the gauge group G, and we have shown that
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the residual symmetry group must be 4 or contain H as a
subgroup. The holonomy groups are then SU, in the SU,
case and SU, in the SU, case, and these are also the residual
symmetry groups. These are very puzzling results and sug-
gest that spontaneous symmetry breaking does not take
place in a pure SU, or SU; gauge theory. Symmetry breaking
in an SU, gauge theory such as the eightfold way of Gell-
Mann and Ne’eman®? must take place some other way, per-
haps dynamically.

We have given a well defined algorithm for uniquely
finding the dimension of the holonomy group, given any
gauge group G and its structure constants. dim H then pro-
vides valuable information about possible residual symme-
try groups after spontaneous symmetry breaking in the
gauge theory. This algorithm is such that it can readily be
put on a computer. For gauge groups as large as SU; with 24
generators, this will be necessary. SU; and other large gauge
groups will be the subject of a subsequent paper. Preliminary
work suggests that the holonomy group of SUj is not SU,
itself.
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In this paper, all inequivalent principal fiber bundles with base space S ? and fiber S/,
corresponding to Milnor classification, are constructed. Electromagnetism with magnetic
monopoles is geometrically described in terms of these fiber bundles. In each of them, the
coincidence of winding number and Chern number is established. The Dirac quantization
condition is shown to have a topological origin. In fact, magnetic monopoles with charge

g = (fic/2e)n correspond, in a topological sense, to the fiber bundle with winding number equal

ton.

PACS numbers: 14.80.Hv, 02.40. + m

1. INTRODUCTION

Electromagnetism with magnetic monopoles was intro-
duced by Dirac in 1931.! The most important consequences
of the presence of magnetic monopoles, already pointed out
in Dirac’s paper, are the following (a) The electromagnetic
vector potential A becomes singular along a string coming
from infinity to the point where the monopole is fixed. (b)
The wave function of an electron moving in the field of a
magnetic monopole should vanish on the string. (c) From (b),
the quantization condition 2eg/#fic = neZ, which relates
electric charge e with magnetic charge g, follows.

More recently, Wu and Yang,” were able to reformulate
Dirac’s theory, avoiding the singularity in the potential. The
procedure employed by these authors was to split up the
region surrounding the monopole in two overlapping re-
gions, with a different vector potential defined in each one.
The two vector potentials are then related by a U(1) gauge
transfromation in the overlapping region. Wu and Yang ob-
serve in their paper that the suitable mathematical structure
to describe gauge theories is that of principal fiber bundle.
More precisely, gauge fields are to be identified with the
components of a connection 1-form in some trivialization, a
strength field tensor with the curvature 2-form, and gauge
transformations with a fiber bundle homomorphism.* So,
electromagnetism is geometrically described by a principal
fiber bundle structure with base space S > and structure group
U(1). Electromagnetism without monopoles is then de-
scribed by the trivial bundle S * X S ', while electromagnetism
with monopoles correspond to nontrivial principal fiber
bundles.

On the other hand, a theorem of Milnor®* provides the
classification of all inequivalent fiber bundles with base
space S " and structure group G: “Let G be an arcwise con-
nected group. Then the set of all classes of equivalent fiber
bundles with group G and base S, is in one-to-one corre-
spondence with /7, (G )”. In the case of electromagnetism
this theorem leads to /7,(S'') = Z inequivalent fiber bundles.
For a non-abelian gauge theory, corresponding to fiber bun-
dles with base.S * and group SU(NV ), the Milnor theorem leads
also to IT,(SU(N)) = Z inequivalent fiber bundles.
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Another way to discuss the classification of fiber bun-
dles is given by the cohomology classes. Starting with con-
nections in a principal fiber bundle P (M, G ), it is possible to
derive a set of closed forms on M, of even degree, by means of
the Weyl homomorphism.’ It happens that cohomology
classes determined by this set of closed forms do not depend
on the particular choice of connectionin P (M, G ). Itis, there-
fore, possible to associate elements of H*(M, R ) with P. Fur-
thermore, these elements verify the axioms for Chern
classes: they belong to H*(M, Z ) and the fiber bundles
P (M, G)over M are classified by them.

In the case of bundles with base S* and group SU(NV),
only the second Chern class does not vanish and its integra-
tion over S * yields the so-called instanton number or second
Chern number. This has been shown to coincide® with the
“winding number” or element of /1;(SU(/V )) in Milnor’s clas-
sification. For electromagnetism, only the first Chern class is
different from zero, and its integral over § 2 produces an inte-
ger number.

Guided by the results about instantons, it is possible at
this point to formulate some questions concerning the math-
ematical structure of the Dirac monopole:

(i) Does Chern number (which might be called mono-
pole number) coincide with the winding number, or element
of 11,(S"") in Milnor’s classification?

(ii) Is there any relation between the integer n = 2eg/#c
appearing in Dirac’s quantization condition, the Chern
number, and the winding number? In other words: Has mag-
netic charge quantization a topological meaning?

The aim of this work is to answer the preceding ques-
tions. A first step in this direction was recently given by
Ryder” and Minami.® Both authors interpret Wu-Yang po-
tentials as components of a connection 1-form in the Hopf
bundle S 3, with base S 2, fiber S ', and projection T given by
the Hopf map with invariant equal to 1. However, a misin-
terpretation of the Gauss-Bonnet—Chern theorem leads
Ryder to Schwinger quantization condition n = 2. Let us
illuminate this point. Take E, to be the canonical linear bun-
dle over P,(C) = §?, with fiber C and structure group
C* = C — {0}, associated with the principal fiber bundle
C? — {0}(P,(C), C*) which, by reduction on the group, re-
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sults in the Hopf bundle S (S %, U(1)). Let C,(E,) be the first
Chern class. Acording to the IV Chern axiom C(E)is a
generator of H}(P,(C), Z), satisfying f5:C,(E,) = + 1,
where the sign 4 depends on the orientation. This would
lead to a quantization condition n = + 1, in contrast with
the result of Ryder.

On the other hand, SO(3) = $3/Z, is another principal
fiber bundle with base $ 2 and fiber S'. Since the “tangent
sphere bundle of § " is associated to the principal fiber bundle
SO(n + 1) over S " with group SO(n)”,” in particular, the fi-
ber bundle SO(3)(S %, S ') is associated with the tangent sphere
bundle of S 2. The Gauss-Bonnet—Chern theorem says®: “If
M is an oriented compact Riemannian manifold of dimen-
sion 2p and if E is the tangent bundle of M, then the closed
2p-form y integrated over M gives the Euler number of M,
where ¥ is the pth Chern class of the bundle E. Therefore,
since the Euler number of S % is 2, using the preceding theo-
rems, it follows that f . C,(E ) = 2 for the fiber bundle SO(3).

The content of this work is as follows. In Sec. 2 the Z
inequivalent fiber bundles with base .S and fiber .S ' of Milnor
classification are constructed explicitly. We observe that the
bundles corresponding to the integers m, and — m, are ine-
quivalent. However, if instead of the group U(1) = SO(2), we
consider O(2) = SO(2) X Z, as the structure group of the
bundle, with Z, = (I, C), we obtain that the bundles corre-
sponding to m and — m are equivalent. Matrix C=(;, _%)
is to be physically identified with magnetic charge
conjugation.

As a particular case, we obtain for # = 1 the Hopf bun-
dle S * used in the construction of Ryder and Minami, and for
n = 2 the bundle SO(3) associated with the tangent bundle to
the sphere S2.

In Sec. 3 we prove that the winding number in Milnor’s
classification coincides with the Chern number and with the
integer appearing in the Dirac quantization condition. For
this purpose, we write down explicitly connections in each of
the fiber bundles, and calculate its Chern classes. We note
through the previously mentioned identifications that all
connections correspond to the Wu-Yang potentials.

2. CONSTRUCTION OF THE FIBER BUNDLES (S?, SY)

As we said in Sec. 1, the fiber bundles with base S ? and
fiber S ! are classified according to the first homotopy group
of S, IT,(S') = Z. Thus, we are going to construct Z inequi-
valent principal coordinate fiber bundles with base S'? and
fiberS":P,(S2,S", {U,}, {¢%}). Choosing as open covering
for §? {U,, U,}, given by

U =1{6,P) 0<P<2m, 0«67}, (1a)

U,={6, ®), 0<P<27, 0<b<7}, (1b)

where (6, @ ) are the polar coordinates on the sphere § 2. The
transition functions ¥%): U,nU,—S, are

506, 8) =no, {2)
where @ is also the polar angle on S ', Let us remark that the
functions ¢ are homotopically inequivalent and thus the

fiber bundles P, constructed from them are also inequiva-
lent. As we shall see in Sec. 3, the choice of transition func-
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tion ¢4 is essential for the geometrical interpretation of the
Dirac quantization condition.

For n = 0, the transition functions are constantly equal
to the identity in S ' and the resulting fiber bundle is then the
product bundle S 2 S !, which describes electromagnetism
without monopoles.

A.Thecasen=1

Let us see that for n = 1 we obtain the Hopf bundle
corresponding to the Hopf projection S *—S2.° We sum up
concisely the structure of this bundle, which will be fre-
quently used in this work. The elements of S > can be identi-
fied with pairs of complex numbers (Z,, Z,) satisfying
|Z,|> + |1Z,]* = 1, in such a way that there exists a one-to-
one correspondence between elements of S * and 2 X 2 com-
plex matrices UeSU(2). We shall parametrize these matrices
by Euler angles:

ZO iZl) i D /2)a, (8 /2)0 i 1/2)
_ — t 0,1 T2, 0’3’ 3
U(®, 6, ¥) (iz; z:)=¢ e e (3)
where
0<P <27, 0<O<m, O<Y<énr (4)

and o,, i = 1, 2, 3, are Pauli matrices.
The Hopf projection is given in these coordinates by
We shall represent the elements of U(1) = S, as a sub-
group of SU(2), by %, 0<a < 2, a being the polar coordi-
nateon S ',

The right action R, of U(1) over the bundle space is
then defined as

RaU(¢, 9, ¢) — ei(<1>/2ja,ei(9/2)azei(w/2)a,eia03

=U(D, 6, ¥ + 2a); (6)

we choose the local sections
0,(®,8)=U(D, 6, D), (7a)
0,(®,60)=U(D, 0, — D). (7b)

Consequently, local trivializations ¢,: 17 |~ (U,)—U(1),
i=1, 2, are given by

$:(®, 6, ¢)= (¢ —D)/2, (8a)

6P, 0, 9) =+ P)/2 (8b)
and the corresponding transition function 3, ,: UnU,—U(1)
is

V(P 0)=@ (9)

which corresponds to the mapping S '—S ! with winding
number n = 1. Q.E.D.

B.Thecasen=2

Next we shall discuss the bundle SO(3)(S 2, S '), associat-
ed with the tangent bundle to the sphere S 2, and we shall
show that it corresponds to n = 2 in Milnor’s classification.

We represent the points of S 2 in Cartesian coordinates
S? = {x = (lo,t )| 2,1} = 1} and the elements of SO(3) by
real 3 X 3 matrices. We define the projection p: SO(3)—S 2 by
P (R )= Rx, with ReSO(3}, x, = (0, 0, 1), and the local sec-
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tions o;: U;—S0O(3) by

O = II:L{Bz fo
aylx) = ? t (@, B=0,1), (10a)
1
—1 - 1)
-1 0 0
oix)=Aoldx), withi=l 0o 1 o |, (100
0 0 -1

where matrix A is a rotation of angle 7 around axis 1. Transi-

tion functions can be obtained as usual from local sections:
s UnU,—S0(2)

Yulx) =0, '(x)o,(x)
— 17 +15 2t 0
t2 413 13413
= -2, —t1+13 ol (11)
1241l 1+t
0 0 1

which belongs to SO(2) CSO(3).

Using polar coordinates on S 2, x = {t,, t,, 1,)=(®P, 8)
with
t, = sin 6 cos P,
t, =sin Gsin P, (12)
t, =cos 6.
Equation (11) is written down as
cos 2@ sin2¢@ 0
VYo lx)=| —sin2® cos2¢® 0 ]=e¥ (13)
0 0 1
Therefore, transition functions are given by
Ual®, 0) =29, (14)

which correspond to a mapping S '—S ' with “winding num-
ber” 2.

Let us now see how the fiber bundle (S, S,) withn =2
can be obtained from the fiber bundle (S,, S,) with n = 1.
Taking Euler parametrization for the elements ReSO(3),

R(®, 6, §) = €™e®e, (15)

with 0< @ < 27, 06 < 7, 0<¥ < 27 and J being the infinites-
imal generators of SO(3), the projection p can be expressed as

0 sin 8 cos @

p(R)=R|0|=|sin 6 sin P ES> (16)
1 cos 0
Representing the elements of S '=U (1)CSO(3) by R,

= ¢+, the right action of S ! on the bundle is given by the
right matrix multiplication

R, R(P,6,/)=R(D, 6, ¥ + a). (17)
Finally, local sections are given in this parametrization by

0,(D,0)=R(D,0, —P), (18a)

o (D,8)=R (D6, D). (18b)

On the other hand, as is well known, the group SO(3) is iso-
morphic to the factor group SU(2)/Z,. Using Euler parame-
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metrization for both groups, the isomorphism is expressed as
R{®, 6, h}={ U (P, 6, ), U(D, 6, ¢ + 2m)}
=U2, 6, ), (19)

where we have introduced the notation U@, 8, ¥) in the
class belonging to SU(2)/Z, associated with the element
U, 6, ¢).

With the identification provided by this isomorphism,
it is possible to construct the fiber bundle (S 2, S ') with n = 2
from the fiber bundle (S, S|} with #n = 1, by means of the
Hopf projection /7, and the canonical projection p, follow-
ing the commutative diagram.

sup) 1 s>
p\ / 1, (20)
SU(2)/Z,

This is possible due to the compatibility of /T and p,: Two
points in SU(2) which belong to the same class in SU(2)/Z,
have the same Hopf projection on S 2.

In a similar way, local sections {18) in SU(2)/Z,, which
will be denoted by ', are obtained from the local sections of
SU(2) by the commutative diagram

sU(2 ) U;
/o*“ (21)
SU(2)/z,

C. The general case

Generalizing the former ideas we shall construct the Z
fiber bundles with base S 2 and fiber S ! corresponding to Mil-
nor’s classification.

(i) Positive n
Let Z, be the cyclic subgroup of SU(2) given by
z, m=0,..,n—1} (22)

and SU(2)/Z,, the right-cosets space of SU(2).

Let us remark that, since Z, is not an invariant sub-
group of SU(2), right and left cosets do not coincide. Our
choice of right cosets is appropriate with respect to the Hopf
projection defined in Ref. 5. We shall denote the elements of
B, =SU(2)/Z, by

U, 6, y) = (U(D, 6, ¢ + 4mm/n),m =0, ...,

— {e(iZTrm/n)a,,

n—1}.
(23)

Since all elements of the class U@, 6, ¢} have the same
Hopf projection, we can define the projection /1, : B,—S * by
the following commutative diagram:

supR) 4y s?
PN / m, (24)
Su(2y/Z,,

where p, is the canonical projection p,,: SU(2}->SU(2)/Z,,.

Let us see that B, is a fiber bundle with base S 2, fiber S /,

projection I7,, and transition functions with winding num-
ber n. Let us first define the right action of the group

U(1) = S ' on the bundle B, in the following way:
R UMD, 8, ) = U™, 6, ¢ + 2a/n). (25)
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This action verifies the property
PRy =Ry.p,, (26)
which is equivalent to the commutativity of the diagram

sup) LR sup
Pn R Pn (27)

na

B, - B,.
The local sections in B, are given by the commutative
diagram

SUR) o U,
AN (28)
B,
Thence

o®,6)=U"D,06,P),
(29)
oD, 0)=U"D, 06, — D)
The trivializations ¢ ™: 1T~ '(U,)—U(1) can be derived from
local sections (29) obtaining
¢ (U™NP, 6, ¢) = (n/2)¢ — @),
(30)
UMD, 6, ¥) = (n/2)Y + P).
Therefore, the transition function is
NP, 0)=nd, (31)

which corresponds toamap.S '—S ! with winding number 7.
Let us finally remark that this general construction includes
as particular cases the bundles B, = SU(2) and B, = SO(3)
previously discussed.

(i) Negative n

Let us now show that it is possible to give a different
fibration for SU(2) in such a way that the fiber bundle with
n = — 1in the Milnor classification comes out. To show it,
we take the same Hopf projection and change the right ac-
tion® for

R.U(®,6,9)=U(®, 6,y 2a). (32)

Then, using the same loca_l sections as in Ref. 7, the
following local trivializations @,: 1T~ Y(U,)—U(1) arise:

$i(P,6, YN = —(¥—D)/2, §,(D,6,¢9)= — (% + D)2,

(33)
which result in the transition function @,,: U,nU,—U, given
by

(@, 0)= — @, (34)

In a similar way we obtain the fiber bundle with winding
number — n (n> 0), by means of a fibration of SU(2)/Z,
different from that used in section (i). We choose the same
projection I7,: B,—S? as in Sec. 2C, and define the right
action of the group U(1) on B, by

R_a U™, 8, )= U"(a, 8, ¥ —2a/n), (35)
which satisfies

pnk_a =R_napn‘ (36)
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Using the last property and local sections (29), it is easy to
find the trivializations

U D, 6, 9) = — (n/2)(¥ — @),

(37)

$PUD, 6, ¢) = — (n/2)(¢ + @)
and the transition functions

(P, 6)= —nd. (38)
We shall denote the space SU(2)/Z,,, fibered by the group
action (32),by B _ .

Let us finally note that the bundles B, and B _,, are
equivalent, provided that we consider O(2) instead of U(1) as
a structure group. Actually, if we consider the continuous
functions 4;: U;,—O(2) given by

/1,.(<D,6)=((1) _01), i=1,2 (39)
we obtain
Un(®,0) =45 4D, 0),,(P, 6 A,(P, 6) (40)

which, by virtue of Lemma 2.10 of Ref. 9, proves the equiv-
alence of B, and B _ . Nevertheless, as we have considered
as the structure group SO(2) = U(1) and the functions A, are
not defined on it, the fiber bundles B, and B _, are not
equivalent in our construction.

3. GEOMETRICAL INTERPRETATION OF THE DIRAC
QUANTIZATION

In this section, we are going to interpret Wu-Yang po-
tentials as local 1-forms of a connection in the fiber bundles
B, . We shall show that the integer » is the topological index
corresponding to the first Chern class of these connections.

As is well known, a connection in a principal fiber bun-
dleis given by a family of 1-forms w; defined on U}, valued in
the Lie algebra of the structure group of the bundle, and
which satisfy the compatibility relations

o'= ad(%‘ Yo’ + Ui ’d¢’ji' (41)
In our case, we shall choose the connection in B, given by
the family

W}y = in/2)(1 + cos 0) d®,

(42)

0l = —i(n/2)(1 —cos 6) dP,
which satisfy condition (41), taking into account the transi-
tion functions given in (31) and (38). The choice of the factor

in front of the connection 1-forms (42) is by no means arbi-
trary, but fixed by the following facts.

The Wu-Yang potentials (4 ' = 4 |, dx")
A'= —g(l +cos0)d®,

(43)
A?=g(l —cos 0)dP
are related by the gauge transformation
A 2 =A r_ "_ﬁ_ce—ﬂgf.’/ﬁcd eZixe/ﬁc — ng¢ (44)
e
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and with the local connection o’ by the equation

Wy = (— ie/fic)d . (45)
Furthermore, relation (44) coincides with compatibility con-
dition (41), in view of the Dirac quantization condition

2eg/fic = neZ.

Let us now describe the topological interpretation of the
Dirac quantization condition. For that purpose, we lift the
local family {®{, } in the usual way:

o =adl¢,” MT*o, + ¢, 'ds, (46)

which, in the particular case of the local forms given in Eq.
(43), results in

@™ = i(n/2)(dy + cos 6 dP). (47)

Thus, the local 1-forms associated with the Wu-Yang poten-
tials are lifted by means of (45) and (46), producing the global
1-form

A= —gldyp + cos 0dP). (48)

Let us remark that no dependence on n appears in (48), be-
cause we have used the Dirac quantization condition and the
1-form (47) projects onto 4 ‘ by the local sections o,

The curvature associated with the connection w'” is

N, =dw, = — in/2)sin 6 dONdP (49)
and the first Chern class is
I ==L 0, =" sin6doAd®, (50)
27 47

so that the topological index associated with 4" is

— n) _
V—Lzy‘l =n. (51)

Finally, the magnetic field is given by the curvature 2-form
associated with Wu—Yang potentials,

B, =dA, =gsin0doNdD, (52)

which again does not depend on n, and whose flux is

®,, = L By, =4, (53)

as it should be for a magnetic monopole.
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4. CONCLUSION

The main result of this work is to prove that the Dirac
quantization condition 2eg/fic = n has a topological origin.
To this end we explicitly build Z unequivalent fiber bundles
over § 2 with fiber .S ', corresponding to the Milnor classifica-
tion /7,(S ') = Z. From a connection in each of these fiber
bundles the corresponding Chern classes are constructed
and the equality between the Chern number and the winding
number [element of /7,(S')] is proved. Furthermore, it is
proven that the former topological numbers coincide with
the Dirac quantization number n. We finally conclude from
the above construction that Z topologically unequivalent
versions of the Dirac monopole do arise, although all of them
give rise to the same monopole magnetic field and Wu-Yang
potentials.

It should be interesting to apply a similar analysis to
study fiber bundles with base space S * and fiber S >. After
Milnor construction there are /7,(S ) = Z unequivalent fiber
bundles whose first element is the Hopf fibration S ’(S 4, 5 3).'°
This analysis would be relevant for the description and clas-
sification of instantons and nonabelian [SU(2)] monopoies.
Some work in this direction is in progress.
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In the present series of papers it is intended to determine the nature and study various
realizations of the dynamical group of microscopic collective states for an 4-nucleon system,
defined as those A-particle states invariant under the orthogonal group O(n) associated with the
n = A — 1 Jacobi vectors. The present paper discusses the case of a hypothetical one-
dimensional space. Simple invariance considerations show that the dynamical group of
collective states is then the group ¥ 4..(2, R ), which is the restriction to the collective subspace
of the group .#4(2, R ) of linear canonical transformations in n dimensions conserving the O(n)
symmetry. In addition to the well-known realization of the dynamical group in the Schrodinger
representation based upon the Dzublik-Zickendraht transformation, two new realizations are
proposed. The first acts in a Barut Hilbert space, which is the subspace of a Bargmann Hilbert
space of analytic functions left invariant by O(n). A unitary mapping is established between the
ordinary Hilbert space of collective states and the Barut Hilbert space and coherent collective
states are defined in the latter. The second is carried out in terms of one boson creation and one

boson annihilation operator through a generalized Holstein—Primakoff representation. The
generator of a U(1) group, which is the one-dimensional analog of the U(6) group of the
interacting boson model (IBM), can then be expressed in terms of the generators of “4_(2, R ).
Finally the generalization of the preceding analysis to a d-dimensional space is outlined in the
cases where d = 2 or 3. The dynamical group of collective states becomes “4_(2d, R ).

PACS numbers: 21.60.Fw, 02.20. + b
1. INTRODUCTION

The construction of a microscopic collective Hamilton-
ian for an 4-nucleon system, as well as the determination of
its eigenstates and dynamical group is one of the major open
problems in nuclear physics. In various recent works the
microscopic Hamiltonian is projected out from the 4-nu-
cleon Hamiltonian by restricting the latter to a single irredu-
cible representation (IR) of the orthogonal group O(#n) associ-
ated with the n = 4 — 1 Jacobi vectors.!”? The simplest
choice for the IR of O(n) corresponds to the scalar represen-
tation, as was suggested by Vanagas.” In that approach a
basis for the microscopic collective states consists of all those
A-nucleon states that are left invariant by the transforma-
tions of O(n).

In arecent publication, Chacén, Moshinsky, and Vana-
gas® construct the microscopic collective Hamiltonian for a
system of three nucleons moving in two dimensions and in-
teracting through harmonic-oscillator forces, as an intro-
duction to the more difficult case of 4 particles moving in
three dimensions and interacting through arbitrary forces.
The generalization to an arbitrary number 4 of nucleons still
moving in two dimensions and interacting through oscillator
forces is carried out in another paper by Chacén and Mo-
shinsky.* In both cases the eigenstates of the collective Ha-
miltonian are explicitly obtained and their dynamical group
is proved to be SO (3, 2). The microscopic collective states are
then put in one-to-one correspondence with macroscopic
collective states classified according to IR’s of a U(3) group,
which is the two-dimensional analog of the U(6) group of the
interacting boson model (IBM).® This step requires a canoni-
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cal transformation, whose form in the classical picture is
given in a paper by Moshinsky and Seligman® and whose
unitary representation in quantum mechanics is contained in
Ref. 3.

To explicitly project onto the collective subspace of the
A-particle space, the authors quoted above make use of a
coordinate transformation which was independently pro-
posed by Dzublik et al.” and Zickendraht.® That transforma-
tion changes the 34 — 3 Jacobi coordinates into a set of co-
ordinates including 34 — 9 noncollective ones and 6
collective ones, namely the three Euler angles that take us
from the principal axis to the frame of reference fixed in
space, and the three principal moments of inertia of the 4-
body system. Although it has a clear and appealing geomet-
rical significance, the Dzublik-Zickendraht transformation
is not easy to handle because the collective variables cannot
be expressed in a simple way in terms of the Jacobi coordi-
nates. Consequently the projection onto the collective sub-
space is difficult to work out. In Refs. 3 and 4 it was carried
out step by step by assuming a simple Hamiltonian and first
allowing the number of particles to be small, namely 4 = 3,
and then generalizing the results to an aribtrary number of
particles. This procedure tends to conceal some simple prop-
erties that would follow from general invariance consider-
ations, independently of the number of particles.

It is one of the purposes of the present series of papers to
show that general invariance principles allow one to con-
struct a basis for the collective subspace and determine the
dynamical group of collective states without preliminary use
of the Dzublik-Zickendraht transformation. That program
is most easily carried out in the formalism of the boson cre-
ation and annihilation operators associated with the Jacobi
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coordinates. We are thus naturally led to look for the realiza-
tion of the collective states and their dynamical group in a
Bargmann Hilbert space® or, more exactly, in the subspace
of the latter invariant under O(n). We shall refer to such a
subspace as a Barut Hilbert space, in accordance with
Kramer, Moshinsky, and Seligman,'® who introduced that
terminology to emphasize that such a space belongs to a class
of spaces first considered by Barut and Girardello.'! In the
Barut Hilbert space, the collective variables assume a very
simple form in terms of the variables of the A-particle sys-
tem, so that the projection onto the collective subspace is
easy to carry out.

Another purpose of the present series of papers is to
investigate further the relation between the O(n) invariant
microscopic collective model and the IBM that has already
been studied by various authors.?>%!2 In this connection, we
want to show that it is interesting to consider a generalized
Holstein—Primakoff representation'? of the dynamical
group of collective states.

In the present paper we restrict ourselves, for pedagogi-
cal convenience, to reviewing in detail the case of 4 particles
in a hypothetical one-dimensional space and outlining the
generalization of the analysis to a d-dimensional space. By
taking d equal to 2 or 3, we can then recover the hypothetical
two-dimensional space considered in Refs. 3 and 4 or the
physical three-dimensional space, respectively. The details
of the d-dimensional-space analysis will be given ford > 1 in
subsequent publications.

In Sec. 2, we start to prove by means of invariance con-
siderations that the dynamical group of A-particle collective
states in one dimension is the group .% 4. (2, R ), which is the
restriction of the group . 4(2, R ) of linear canonical trans-
formations conserving the O(n) symmetry'* to the collective
subspace of the 4-particle space. We then show in Sec. 3 that
the realization of %4 (2, R ) in the Hilbert space of collec-
tive states &%, which we obtain by using the Dzublik-Zick-
endraht transformation in one dimension, coincides with the
dynamical group previously derived by Moshinsky and his
collaborators. !> In Sec. 4, we turn to the definition of collec-
tive variables in a Barut Hilbert space of collective states & _,
and obtain a realization of ¥ 4,(2, R )in that space. In Sec. 5,
we show that there exists a unitary mapping between the
elements of the Hilbert spaces 5#°. and .% . Section 6 is de-
voted to the definition and study of coherent collective states
in the sense of Barut and Girardello.'! In Sec. 7 we then pass
on to the generalized Holstein—Primakoff representation of
Z4.(2, R ) and show that the generator of a U(1) group can
be written in terms of the generators of .¥4_(2, R ). Finally
in Sec. 8, we prove that when shifting to 4 dimensions, the
dynamical group of collective states becomes .*4,.(2d, R )
and outline the generalization to that case of the analysis
carried out in the preceding sections.

2. DYNAMICAL GROUP OF MICROSCOPIC
COLLECTIVE STATES IN ONE DIMENSION

In this section, we consider a system of 4 particles in a
one-dimensional space, construct a basis for its collective
states, and obtain the dynamical group of the latter.

Let us denote by x,, s = 1,2,...,n, the n = 4 — 1 Jacobi
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coordinates of the 4-particle system, and by p, = — id/dx,,
s = 1,2,...n, the momenta canonically conjugate to x,. As
usual, we can introduce boson creation and annihilation op-
erators associated with the Jacobi coordinates 5, and £,

s = 1,2,...,n, defined by

7]3‘ = (1/‘/2)(x\ - ips )’ 5.&‘ = (1/\/2)(xs + ips) (21)
and satisfying the following commutation relations:

(7 7.1=1[6,61=0, [£,m]=6,. (2.2)
In Eq. (2.1), we use units in which #, the mass m of the
particles, and the frequency w are equal to 1. In terms of the
operators 7,, we can construct a basis for the translationally
invariant A-particle states,

¥ )
= (At ) 2y ey, |0),
Ny N =0,1, .., (2.3)

where |0) is the boson vacuum state.

It is well known'* that a dynamical group for the 4-
particle states (2.3} is the group of linear canonical transfor-
mations in » dimensions, the symplectic group Sp(2n, R),
whose generators are the #(2n + 1) bilinear operators

(2.4a)

(2.4b)
st =1,...,n, (2.4¢)

DII =N st = 1,...,”.

D, = §,\'§l’
E.vt = %(ﬂsé‘{ + §I 7’() = C&‘r + %ast’
and satisfy the following commutation relations:

s<t=1,...,n,

[E., E,.. ] =6,E, -6, K,

[E., D, ]=6,D]. +6,D,

[E, Dy, 1= —6,.D, —6,.D,, (2.5)

[D}, D}, ] = [D,, D,.] =0,

[D,,D!, ]=6,E,, +6,E; +6.E,  +6,E,.
The n weight generators are the operators E_, s = 1,...,n. In
Eq. (2.4c), we introduced the operators

C, =745, st=1..n, (2.6)

which are the generators of the U{n) subgroup of Sp (21, R ),
and satisfy the same commutation relations as the E,
operators.

In the construction of collective A-particle states, we
are interested in the (full) orthogonal subgroup O(n) of U(n),
whose generators are the Hermitian operators

A, = —i(C, —Cy), s<t=2,.,n, (2.7)
and satisfy the following commutation relations:
[Axt’ As’r' ] = i(ass'Atl' + 5!1'Ass’ - ‘Ssl'Als' - 5ts’Ast')'

(2.8)

We have thus obtained the chain of groups
Sp(2n, R )DU(n), (2.9a)
U(n) D0O(n). (2.9b)

The A-particle states (2.3) are classified according to the
chain of groups (2.9a). They indeed belong to one of two IR’s
of Sp(2n, R ), (") or (4"~ '2) according to whether the total
number of bosons A4~ = 4", + .- + 4", is even or odd."*
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Those IR’s of Sp(2n, R ) are characterized by their minimum
weights, corresponding to the state |0) or 7, |0), respective-
ly. The states (2.3) also belong to a given IR of U(n), namely
the totally symmetrical one characterized by [.#"]. The re-
maining quantum numbers necessary to specify the states
correspond to a classification according to the canonical
chain of U(n), i.e., U{n)DU(n — 1)D--DU(1).

To get states classified according to the chain (2.9b), one
would have to take appropriate linear combinations of the
states (2.3). The IR’s of O(n) contained in the IR [.#"] of U(n)
can be entirely characterized by a single quantum number A,
which can take the values 4", 4" — 2,...,0(1) if .+ is even
(odd).

In the present work, the 4 particle collective states are
assumed to belong to the IR(0) of O(n). A basis for them can
be easily constructed from the states (2.3). As the collective
states must be invariant under O(n) and the vacuum state |0)
obviously belongs to them, the remaining collective states
are obtained from |0) by application of all the possible Of(n)
invariants that can be formed from the creation operators 7,
s = 1,...,n. It is well known that there is only one basic invar-
iant (by an invariant we mean an absolute invariant of the
theory of invariants) of O(n) that can be formed from the
vector 77,, namely the scalar product 27_ , %2.'® Therefore a

5

basis for the collective states is made of the states

6n) «(2 nf)”|o>, N=01,..

§s=1

(2.10)

Incidentally, let us mention that we should have
reached the same result if we had considered the collective
states as those states invariant under the rotation group
SO(n) instead of those invariant under the full orthogonal
group Ofn). It is indeed not possible to form a pseudoscalar
from the vector 7,, s = 1,..., n, so that all the invariants un-
der SO(n) are also invariants under O(n). In one dimension,
one may therefore indifferently use O{n) or SO(n) to con-
struct collective states.

To discuss the properties of the states |@,, ), it is advan-
tageous to consider a chain of subgroups of Sp(2n, R ) other
than (2.9), the chain

Sp(2n, R)D.%4(2, R )X O(n), (2.11a)
FA2, R)DU(L). (2.11b)

The . 4(2, R ) group can be interpreted as the group of linear
canonical transformations conserving the O(n) symmetry.'*
Its generators are obtained by contracting those of Sp(2n, R )
with respect to the particle index s. They are given by

9T=iﬂf,

s=1

D=3 £, (2.12)
s=1
1 n
& =—2— z (nsé-: +§sn:)= 4 +ﬂ/2,
s=1
and their commutation relations by
(8, 2% =29, (¢,9]=-29, [2,9']=47%.
(2.13)

It can be easily checked that the operators £, &, and &
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commute with the generators A, of O(n). The % (1) sub-
group of #4(2, R ) is generated by the single operator

€ =3y 4.
s=1
Using definition (2.1), the basic collective states (2.1)
can be rewritten as
l6n) =an(@NV|0), N=0,1,.., (2.15)

where @, is a normalization coefficient to be determined by
the condition

(2.14)

(¢N' '¢N> =6yn- (2.16)
From the commutation relations (2.13), one gets
ay=2"Y[Nn/2)y]17" (2.17)

where (n/2)y =n/2 (n/2 4 1)+(n/2 + N — 1) is Pochham-
mer’s symbol, and the phase of a,, has been chosen to be
equalto + 1. With this convention, the generators of .7 4(2,
R ) act on the collective states as follows:

DY y) =2[N+ )N +n/2)1"*|én. ),  (2.18a)
D|py) =2[NIN+n/2—1)]1"?¢n_,), (2.18b)
&|dn) = 2N+ n/4)|dy). (2.18¢)

Equation (2.18) clearly shows that the basic collective states
belong to asingle IR of the group ¥ 4(2, R ), characterized by
its minimum weight (n/2) corresponding to the vacuum
state |@,) = |0). When acting upon the collective states, the
Casimir operator of % £(2, R ), defined as

9=8>-192'9 + 297)], (2.19)

is diagonal and its eigenvalue is equal to
9 =l(l - 2). 2.20
(¥) 513 (2.20)

The group .“4(2, R ), however, also acts upon the non-
collective 4-particle states [with the restriction that states
belonging to different IRs of O(n) are not mixed)]. Therefore
it is not the dynamical group of collective states that we are
looking for. To get the latter we have to restrict “4 (2, R ) to
the IR(0) of O(n), or in other words, to project it onto the
collective subspace of the 4-particle space. We shall denote
the dynamical group of collective states obtained in this way
by “4.(2, R). The projection of any operator onto the col-
lective subspace will be distinguished from the operator itself
by an upper or lower index ¢. The generators of % 4.(2, R )
are then the operators

DY=9 9P,
D =P .IP,
and

(2.21)

F=P EP,,

where &, denotes the projection operator onto the collec-
tive subspace. As the operators 27, &, and # do not con-
nect collective states with noncollective ones, we may sup-
press one & operator in the definition of any of the
generators (2.21), writing, for instance, 2! = # 9"

= P17 ,. As a consequence, the operators (2.21) satisfy
commutation relations similar to Eq. (2.13) so that the dyna-
mical group is indeed a symplectic group, as mentioned pre-
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viously. We may now replace the generators of % 4(2, R ) by
those of %4, (2, R ) in Egs. (2.15) and (2.18). By doing so in
Eq. (2.19), we get the Casimir operator ¥, of “£_(2, R)
which reduces to a constant equal to

Y. =n/2n/2 —2). (2.22)

For practical use of the projection procedure one has to
find explicit ways of carrying it out. In the following sections
we describe three different methods of projection leading to
three different realizations of the dynamical group. In Sec. 3,
we begin by applying the well-known procedure based upon
the Dzublik-Zickendraht transformation.

3. THE GROUP %/ (2, A) IN THE SCHRODINGER
REPRESENTATION OF COLLECTIVE STATES

In the representation wherein the operators x,,..., x,, are
diagonal an A-particle state | ¥ ) is represented by the wave
function ¥ (x,,..., x,,), which is an element of a Hilbert space
#". The wave functions ¥, - (x,,...,x, ), representing the
states |¥ . - ) defined in Eq. (2.3), form a basis of #".
Projection onto the collective subspace %, of # is carried
out by means of the Dzublik-Zickendraht transformation.
Although the projection of the collective part of an arbitrary
Hamiltonian has already been worked out and the dynami-
cal group of collective states has been obtained in that way by
Moshinsky and his collaborators,'® we exhibit below the de-
tailed application of the Dzublik-Zickendraht transforma-
tion for two purposes. First we wish to show that the collec-
tive states and their dynamical group derived in Sec. 2
coincide with those of Ref. 15. Second, we shall need their
explicit form in Sec. 5 so as to establish a mapping between
#. and the Barut Hilbert space of collective states . # . to be
introduced in Sec. 4.

For the one-dimensional case, the Dzublik-Zicken-
draht transformation has the form?

x, =pD} (@), .., s=1,..,n, (3.1

n-—l)s

where

p=($ )" 3.2

s=1

is the collective coordinate, and «,...,@, | are the remaining
n — 1 noncollective coordinates. In Eq. (3.1), ||D \(a)| is an
n X n matrix defining the IR of the SO(n) group character-
ized by 1. As we do not need the full matrix of the representa-
tion but just the row ¢t = », we have only n — 1 angular co-
ordinates « rather than the full complement of in(n — 1).
Note that to be consistent with the definition of collective
states as Ofn) invariant states, one should use a representa-
tion matrix of O(n) instead of that of SO(n) appearing in Eq.
(3.1). The replacement of O(n) by SO(n) in the definition of
collective states in one dimension was justified in Sec. 2.

The elements of the collective subspace 77, depend
upon the single collective coordinate p. We shall denote by
¥( p) the wave function of an arbitrary collective state |i/).
The functions ¢ ( p), representing the states |¢,, ) defined in
Eqg. (21.5), form a basis of 777,. We shall find their explicit
form below. Before coming to that point, let us first consider
the realizations of the groups ./4(2, R Jand .¥ /. (2, R )in the
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Hilbert spaces # and 57, respectively.

When replacing the boson creation and annihilation op-
erators in Eq. (2.12) by their definition (2.1), we get a realiza-
tion of the generators of .“4(2, R ) in J7 that we continue to
denote by the same symbols:

@*z%Z(—pi-&—x —2ix,p, — 1),

N 1 .
9 =72(—p§+x§+2zx‘ps +1), (3.3)

£ —— 5 2+ 5.

Carrying out the transformation (3.1) in Eq. (3.3), we can
express the generators of .%4(2, R ) in terms of p, a;,...,
a,_,8/dp,3/8a,...,andd /da, . If inthose expressions we
keep only the part depending upon p and J /dp, we get their
projection on &%”.. In this way, we find that the generators of
S %.(2, R) are realized in J7°, by the following operators:

2
7= o+ (L —2) 2t ] e
dp* p

1[d*? n—1 d

.@f=7 Py ( +2p)$+p2+n], (3.4b)
Eé’“z—l—[—— 9 _ n—-l_8_+p2}.

2 p* p 9

One can check that the operators (3.4) satisfy commutation

relations similar to Eq. (2.1) and that the Casimir operator

Y . defined in terms of them fulfills Eq. (2.22), as it should.
As shown in Eq. (2.18c¢), the basic collective states |@, )

are the eigenvectors of the weight generator & of

F4.(2, R) corresponding to the eigenvalues 2(N + n/4).

The functions ¢ ( p) that represent them in 5%, are therefore

the solutions of the differential equation

1 d’? n—1d
RV NP B R PP
2 dp p dp
(3.5)
which is the radial equation of an n-dimensional harmonic
oscillator. They are given by
dnlp)=byp =" VT (p), (3.6)

where b, is a normalization coefficient, and fy'"" ~ 2*( p) can
be expressed in terms of an associated Laguerre

polynomial, '’

NP =

(3.4¢)

NP CN +n/2)]7 2
Xexp( — 4 p%p" = LT p?). (3.7)
)

The functions /% ~ 2 p

[ aors iors- 10
0

To calculate the normalization coefficient b, in Eq.
(3.6), we first have to determine the measure d7( p) of the new
Hilbert space .. In 5 the scalar product of any two ele-
ments @ (x,,..., x,}and ¥ (x,,..., x,,) is defined by

are normalized in such a way that

— S (3.8)

(P |¥) = fj ) a’x,---f: xdx,, D*xyyo X, )V X1y X, )
(3.9)
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We choose the measure dr{ p) of 7, in such a way that the
scalar product of any two elements ¢ ( p) and ¥( p) of &, is
the same whether calculated in #°, or in 77, i.e.,

@l ={" ax- [ dx, 6 4o

—

= fow dr(p) 8 *(p)¥(p). (3.10)

When expressed in terms of the variablesp, a,,..., a, _ ;, the

volume element dx,---dx, , becomes®
dx,..dx, =p" ‘dpdwla,,...a,_,), (3.11)

where dw(a ..., &, _ ) is the measure in the space of noncol-
lective variables. Therefore

dr(p) = Ap" ~ 'dp, (3.12)
where
A =J.da)(al,..., a, ) (3.13)

is a constant that remains to be determined. For that pur-
pose, let us apply Eq. (3.1) to the wave function of the vacu-
um state by taking ¢ (p) = ¢{ p) = &, p), where

Sol ) = Yo 0lX 15 Xa) =7~V exp( — 4 p?).  (3.14)
One gets
drip)=27"*[T(n/2)] " 'p"~ dp. (3.15)

It can be easily checked that the realizations (3.4a} and (3.4b)
of Z°" and & are Hermitian conjugates of each other and
that the realization (3.4c) of € is Hermitian with respect to
the scalar product (3.10) and the measure (3.15).

In order that the wave functions ¢ ( p) form an orthon-
ormal set under that measure, i.e.,

[ artow2(piosp) = 81, (3.16)
b, must satisfy the condition
lby>=4"", (3.17)

owing to Egs. (3.6) and (3.8). Only the phase of b, now re-
mains to be determined. Up to now, we have only considered
the realization in 57, of the last of Egs. (2.18a)—(2.18c¢).
When considering the first of these equations (the second
follows from it by Hermitian conjugation), one can fix the
relative phase of the by’s. It was shown in Ref. 17 that the
functions £ ~ "% p) satisfy the following equation:
1 d? d
J— [ — _|._ —_—
2 [ dp? » dp
n—1)n—3 "
+ ( )(2 ) _p2 + 1}/‘(]\, 2)/2(/7}
4
= 20N+ )N + /213533 p).
Therefore ¢ ( p) will fulfill the condition
1 {d? ( n—1 ) d 2 ]
— ==+ —2p)—+p*—n
: [dp2 ) P
=2((N+ )N +n/2)]" by, 1 () (3.19)

ifby ., = — by. By requiring that the expressions for ¢ p)
deduced from Egs. (3.6) and (3.14) be the same, one gets

(3.18)
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b, = 1 so that the overall phase factor of the b,’s is deter-
mined to be ( — 1)". The final result for b, is therefore

by =(— 1)W1/ 2= "*[I(n/2)]"/2 {3.20)
This completes the derivation of the explicit form of the
functions representing the collective states in 7%,

In the next section we shall proceed to realize the collec-

tive states and their dynamical group in the Bargmann Hil-
bert space of analytic functions.

4. THE GROUP %/ (2, A) IN THE BARUT
REPRESENTATION OF COLLECTIVE STATES

In the Bargmann realization of quantum mechanics,’
an arbitrary A-particle state | ¥ ) is represented by an analyt-
ic function ¥ (z,,...,z,) of n complex variables z,, s = 1,...,n.
Thespace ¥ spanned by those analytic functions is a Hilbert
space, whose scalar product is defined by

(@ 1#) = [dute-dutz,) (B erreeia) P 2,
(4.1)
where
dujz,)=7n""exp|—z,2*)dRez, dImz, s=1,.,n.
(4.2)

The Bargmann representation is well adapted to harmonic
oscillator problems as the boson operators (2.1) are repre-
sented by

7, =2z, and &, =d/0z,. (4.3a,b)

The functions ¥ - i+ (21,2, ), TEPTESenting the basic
states (2.3), are obtained from the ground state function

....

and are therefore written as
o (Zienz,) = AN ) (44)

They span an orthonormal basis of the Bargmann Hilbert
space .% . From Eq. (4.3), it is easy to show that the gener-
ators of the dynamical groups Sp(2n, R ) and .#4(2, R ), de-
fined in Sec. 2, are given by

DII =2z, st = 1,...,”,
82
st — ) st = 1,“(,?!,
0z,0z, (4.5)
d
Esl = Zs — + &551, s, t= 1,...,’1,
az,
and
2'=3z, (4.6a)
7 7
=237 4.6b
zs: a7z (4.6b)
d n
=3z —+, 4.6
;zs dz, + 2 (4.6¢)
respectively.

In Sec. 2, we showed that the basic collective states are
given by Eq. (2.15). In Bargmann representation, their wave
functions can be written as
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Bu(21rz,) =aN(2 zf)N, (4.7)

by using the expression (4.6a) of the generator £ . This ex-
pression of @, suggests the introduction of the complex col-
lective variable

w=> z. (4.8)

As can be easily seen, w is the only scalar with respect to O(n)
that can be built from the vector components z,. The n com-
plex variables z,, s = 1,...,n, can therefore be replaced by the
single complex collective variable w and n — 1 complex non-
collective variables, whose explicit expression will not be
needed hereafter. The wave functions (4.7) of the basic col-
lective states are rewritten as

It =2 |¥(2)
and form an orthonormal set of functions in .% , i.e.,
[dute-dute,) [B-0)]*But) = By

As any collective state |) can be expanded in terms of the
states |@, ), it is represented in .# by an analytic function of
w, P(w). All those functions span a subspace .7 , of F. We
shall proceed to determine the nature of that subspace
below.

Before coming to that point, let us first realize the dyna-
mical group of collective states #4_(2, R ) in % . As the
collective wave functions depend upon w, we have to retain
in Eq. (4.6) only the terms containing w or d /dw. In this way
we get

} S, (4.9)

N

(4.10)

Dt =w, (4.11a)
& a
D=4 w2, 4.11b
Y o +en dw ( )
g d L 1 (4.11c)
dw 2

In agreement with Sec. 2, the Casimir operator of the sym-
plectic group becomes a multiple of the unit operator in this
realization. It can be also checked that the operators (4.11)
act on the functions ¢, (w) in accordance with Eq. (2.18). In
particular the functions ¢, (w) are the eigenfunctions of ¢
corresponding to the eigenvalues 2(NV + n/4).

To make .# . a Hilbert space we have to equip it with a
scalar product. That scalar product follows in a natural way
from the scalar product (@ | ¥ ) defined in # by restricting it
to collective states. When replacing ¥ (z,,...,z,) and
D(z,....2,)by 11—/(w) and @ (w) respectively, Eq. (4.1) canindeed
be put into the form

@) = fdu(zl)---du(zn) (6 (0)]*Pw)

= deW) (4 (w)]*w), (4.12)

after performing the transformation from the variables
z,,...,Z, to the variable w and n — 1 noncollective variables
and integrating over the latter. The measure
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do(w)=fw)d RewdImw {4.13)

of 7 . depends upon a weight function f (w), independent of
the functions ¥(w) and & (w), that remains to be determined.
Instead of explicitly performing the transformation
from the variables z,,...,z, to the collective and noncollective
variables, it is much easier to determine the weight function
Jf(w) from the Hermiticity condition to be fulfilled by the
realizations (4.11a) and (4.11b) of Z " and Z°, i.e., (Z°T)'
= Z°. For arbitrary collective wave functions #(w) and
& (w), the following relation must hold

f dotw) [w (10)]*Pw)

2

=Jda(w) [J(wn*[4w 2 +2n%]12(w). (4.14

w2
By integrating by parts in the right-hand side of Eq. (4.14),
we obtain the differential equation

3 d
Py 2(n — 4) I w"‘]j(w) =0.
When we multiply this equation by w, we obtain a differen-
tial equation invariant under the transformation
w—w explig). Let us therefore consider a new variable

u = (ww*)'’?, in terms of which Eq. (4.15) becomes

2
u2% —(n— 3)u% — uz]f(u)=0.

For the scalar product of #(w) and @ (w) in .Z , to be conver-
gent, an asymptotic condition has to be imposed on f (1)
when u— oo. Taking this into account, the solution of Eq.
{4.16) is given by

Sflu)=au'"~ ZVZan - 2)/2(“)’ (4.17)

where K is a modified Bessel function'® and « is a yet unde-
termined constant. It can be checked that with the weight
function (4.17), the realization (4.11c) of & is Hermitian as it
should be.

Finally we determine the constant a by imposing Eq.
(4.12) validity. For that purpose, we only have to consider
two particular functions for ¢(w) and @ (w), for instance
Hw) = ¢ (w) = dy(w) = 1. Equation (4.12) then reduces to
fdo{w) = 1, and using formula (6.561.16) of p. 684 in Ref. 18,
we finally get the measure

dofw) = [72"°I (n/2)]~ Hww*)/4" =2

[4w (4.15)

(4.16)

XKy — 2(Vww*)d Re w d Im w. (4.18)

As a consequence of Eq. (4.12), the set of functions @ (w)
remains orthonormal in % _, i.e,,

f do(0) [y ()] * B (1) = Sy

A scalar product similar to the one defined in Eqs. (4.12)
and (4.18) was obtained by Barut and Girardello'' in consid-
ering the coherent states associated with the Lie algebra of
the symplectic group Sp(2, R ). Therefore the states leftinvar-
iant by the transformations of the orthogonal group O(n)
span a Barut Hilbert space. A similar result was obtained by
Kramer et al.'® for O(2) in another context.

In the next section we shall consider in detail the map-

(4.19)
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ping between #(w), which we shall call the Barut representa-
tion for the above-mentioned reasons, and the Schrodinger
representation ¥( p) encountered in Sec. 3. This will achieve
a link between the two realizations of the collective states
considered above.

5. UNITARY MAPPING BETWEEN THE SCHRODINGER
AND BARUT REPRESENTATIONS OF COLLECTIVE
STATES

For the purpose of establishing a mapping between the
collective subspaces #°, and .% _, let us briefly recall the
relation between the Schrédinger and Bargmann pictures in
the full Hilbert space.® The representations ¥ (x,,...,x, ) and
¥(z,,...z,) of any state |¥ ) in # and .7, respectively, are
related by the integral transform

57(2,,.,.,2,,)
= fdx,...dx,, Az, x) Az, X )P (X0%,), (5.1)

whose kernel is given by

~exp[ — 4z} + x3) + v22.x,],
s=1l..n (52

A (z,,xs) =T

That transformation is unitary, meaning that the scalar
product (@ | ¥ ), defined in Eqgs. (3.9)and (4.1) for # and 7,
respectively, is preserved.

Let us now show that the transformation (5.1) maps #°,
onto ¥ .. If ¥(x,,...,x,) is the Schrédinger picture ¥( p) of a
collectlve state, if follows from Eq. (5.1) that its Bargmann
picture is given by

P (2y..02,) = de,...dx,, Alzy, x).. Az, x )W p).(5.3)

It can be easily seen that the right-hand side of Eq. (5.3) is
invariant under the transformation z,—Z2,0_,z, of O(n), so
that the left-hand side depends only on the collective vari-
able w and thus belongs to % .. Using Eqs. (3.11) and (3.12),
the integral transform (5.3) takes the form

) = f drl p)B (w, P11 p), (5.4)

where the kernel B (w, p) results from the integration over the
noncollective variables. We shall, however, use another
method to determine B (w, p) because the direct method just
outlined leads to very complicated calculations.

For that purpose, let us profit from the fact that the
action of the generators of % 4.(2, R ) must be the same in
both the Bargmann and Schridinger representations. This
leads to the following relations:

- 1|8 n—1 d

o b (552 )

i) = [dr(p) Bw. kS (o %)
+p° — n]lﬁ( p)s (5.52)
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(4w —3—2— +2n -—-)w(w)

a 2
=fdr(p)3(w,p)% [%*“ ("; : +2”)7?%
+p*+ n]r/f(p), (5.5b)
(2w5"_+ )¢< w)

when Eqgs. (3.4) and (4.11) are used. As these relations must
be satisfied by any collective function ¥( p), they are equiv-
alent to the following system of partial differential
equations~

[+ (5

) J +p*+n—2w|B(w,p)=0,
dp

(5.6a)
[az p(2L gl sl
dp* o r dp P dw?
— i]B (w, p) =0, (5.6b)
dw
F  n-—1 A d ]
. - 4y — ,p)=0. (5.6
o+ oy P e B =0 560

To solve the latter it is convenient to first substract Eq. (5.6¢)
from Eq. {5.6a). In this way we get the first-order equation

[pi—-f-pz]B(w,p) = [Zwé%ﬁ- w]B(w,p), (5.7)

dp
whose solution is
B(w, p) = exp| — } p* — L wiglx), {5.8)

where g(x) is an arbitrary function of x = wp”. Any of the
three equations (5.6a)~(5.6c} then leads to the same ordinary
differential equation for g(x),

d’g dg

dx* dx
whose regular solution is an hypergeometric function
of1(1/2; x/2). The kernel of the integral transform (5.4) is
therefore given by

—g=0, (5.9)

B(w,p)=7"""*exp(— §p* — Jw)oF\(n/2; §wp?),

{5.10a)
or
B(w,p)=m"""*I"(n/2) exp( — { p* — L w)

X P(W/z)l/z] T 2)/21(,1 el p(2w)'21,(5.10b)
where 7 is a modified Bessel function.'® The normalization
coefficient has been determined by the condition that the
Schrédinger picture of the vacuum state @y p) = 7~ "

exp( — } p*) be mapped on its Barut picture ¢,(w) = 1. In its
calculation, formula (6.631.4) of p. 717 in Ref. 18 has been
used.

From Secs. 3 and 4, we know that the scalar product of
two collective states is the same whether calculated in %)
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or in #°.(% .). From the unitarity of the mapping between
# and .7 , it follows that the scalar product of two collective
states is preserved when going from 77, to ¥ _:

fda(w) [ (w)]*$fw) = fdf( P g (A1*¥p).  (5.17)

By introducing the integral transform (5.4) into the left-hand
side of Eq. {5.11), we obtain the relation

f do(w) dr{ p) dr{p’) [B (w, p)1*B (w, p')[$ ()] *¥( p')

~ [[arto) (8 (o0*0tp) (5.12)
which implies that
[dotu 810, p11*B w1
= I (n/2)[2%" =] 18(p — p'). (5.13)

This expression is nothing else than the reproducing kernel
of 7 ,:

fdr(p')[ [ dotu) 1B 1w, p1*B w, p')}¢( P = p)
(5.14)

By permuting the order of integration in the left-hand side of
Eq. (5.14) and using Eq. (5.4), we get the inverse transform

Wp) = f dofw) [B (w, p)]* ).

As the transformation is unitary, it is not surprising to find
that the kernel of the inverse transform is the complex conju-
gate of that of the direct transform as was already the case for
Bargmann’s representation.

The last point we want to discuss in connection with the
Barut space ¥ _ is its reproducing kernel. Let us apply suc-
cessively Eqgs. (5.4) and (5.15). We obtain

Yw') = f dofw) dr{ p) B (W', p)[ B (w, p)1*P(w), (5.16)

which means that

(5.15)

KW', w) = [ drip) B, p)LBw,pl1* (5.17)
is the reproducing kernel in ¥ _, i.e.,
') = f dotw) K (w', wifiw). (5.18)

A simple calculation, using formula (6.615) of p. 710 in Ref.
18, leads to the relation

KW, w) =270 (n/2ww?) "=, (w2,

{5.19a}

or
KW', w) = oFy(n/2; § w'w*). (5.19b)
The reproducing kernel X (w’, w) will play an important part
in considering coherent collective states in the next section.

6. COHERENT COLLECTIVE STATES

As shown in Sec. 4, the collective states span a Barut
space associated with a well-defined IR of %4 _(2, R ). This
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makes it possible to define coherent collective states.

The reproducing kernel, defined in Egs. (5.18) and
{5.19}, is an analytic function in both complex variables w’
and w*. Its complex conjugate [K (w’, w)]* is therefore an
analytic function of w and belongs to .% _. Let us denote by
|w’) the state whose Barut representation is given by [K (w’,
w)]*, w' playing the role of a complex parameter.

The scalar product (4.12) of {w') with an arbitrary state
l1) is equal to

(') = j dotw) K (', w)w) = Hw),

using the definition of the reproducing kernel. The Barut
representation of a collective state is therefore given by a
scalar product, as for any representation in quantum me-
chanics, provided the states |w') form a basis. This will be
the case if they give rise to a resolution of the unit operator I,
of the collective subspace & _, i.e., if

[ dotu ) i = 1.

To prove Eq. (6.2), one only has to show that the matrix
elements of both sides with respect to the basic collective
states |@, ) are equal, or in other words that

j dotw) (b |w) (w|dy) = Byuy-

From Egq. (6.1), one has (w|@y ) = é(w), so that Eq. {6.3)
reduces to the orthonormality condition (4.19) of the set of
functions ¢, (w). Therefore the closure relation (6.2) holds
true and the states |w) span a basis of ¥ . It is interesting to
note that when the left-hand side of Eq. (6.2) is considered as
acting on the whole space .7, the operator 7, in the right-
hand side must be replaced by the projection operator Z _,
defined in Sec. 2.

The overlap between the old basis states |¢, ) and the
new ones |w) follows from Eqs. (6.1) and (4.9),

(6.1)

(6.2)

(6.3)

(wlpy) = dnlw) =27V [NUn/2)y ]~ 2w", (6.4)
and implies the following expansion:
wy= 3 16n) (Bulw)
= 3 27V [NUn2 ) Pt gy, (6.5)

This expression is very useful in proving the most important
property of |w), namely that |w) is an eigenvector of the
lowering operator Z°¢ of ¥/ (2, R ) corresponding to the
eigenvalue w*. Acting with Z° on Eq. (6.5} and using Eq.
{2.18b), we get immediately

D\w) = w*|w), (6.6)

showing that |w) is a coherent state associated with the Lie
algebra of 4 (2, R ) in the sense of Barut and Girardello. "

The coherent states |w) are overcomplete and do not
form an orthonormal set. From Eq. (6.1), the overlap be-
tween any two coherent states is nothing else than the repro-
ducing kernel

(w'lw) =K W', w). (6.7)
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As a consequence of the closure relation (6.2), any collective
state |¢) can be expanded in terms of the coherent states |w):

) =fdo(w) w) (w|y) = f dotw) Bwllw).  (6.8)

The coherent states introduced in the present section
will play an important role, similar to that of the usual coher-
ent sates associated with the Heisenberg algebra,'®?° in the
collective operators (or collective part of operators) repre-

sentation and in their matrix elements evaluation.

7. GENERALIZED HOLSTEIN-PRIMAKOFF
REPRESENTATION OF .. (2, R)

In this section we present a third realization of the dyn-
amical group of collective states that is suitable for investi-
gating the relation between the microscopic model of collec-
tive states considered in the present paper and the
macroscopic model known as the IBM.’ In one dimension
the latter makes use of a 1I(1) group instead of the 1l(6) one
considered in three dimensions. Therefore we have to estab-
lish a connection between the basic collective states |¢,, ) and
the eigenstates of a one-dimensional harmonic oscillator,
whose symmetry group is U(1). For such purpose, it is inter-
esting to define new boson creation and annihilation
operators.

Let us first introduce a creation operator a' that is act-
ing on |, ) as the creation operator n acts on a one-dimen-
sional harmonic oscillator state

a'lgy) = (N + 1)1/2|¢N+1>- (7.1a)
It follows that its Hermitian conjugate a acts as
algn) =V'Nlgy_1), (7.1b)

and that a'a measures the number of quanta,

a'algy) = N|gy). (7.2)
Moreover the @ and a' operators so defined obey the commu-
tation rule

{a,a'] =1 (7.3)

Next let us realize the generators of # (2, R ) in terms
of these boson operators. From Eq. (2.18a), we know that

DV py) =2[(N+ DN +n/2)}' %8y . 1). (7.4)
Using Eqs. (7.1a) and (7.2), this relation can be rewritten as

DM py) =2at(a'a +n/2]"?|4y). (7.5a)
A similar analysis leads to

D\py) =2la'a +n/2]1'a|¢y), (7.5b)
and

Elpn) = 2[a'a + n/4] |Pn)- (7.5¢)

We therefore obtain the following realization of #4.(2, R)
in terms of boson operators

g =2at{ata + n/21V?, (7.6a)
D =2[ata+n/21"a, (7.6b)
&< =2[ata + n/4], (7.6¢)

which is simply the generalized Holstein-Primakoff repre-
sentation'? of #4.(2, R ), previously derived by Mlodinow
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and Papanicolaou®! in another context.

Finally we are able to invert Eq. (7.6) and to express the
1(1) generator associated with the one-dimensional harmon-
ic oscillator in terms of the generators of .¥4.(2, R ). From
Eq. (7.6¢), the generator of 11(1) is given by

C=ala=4&° —n/2). (7.7)

Introducing Eq. (7.7) into Egs. {(7.6a) and (7.6b), we also get
the boson creation and annihilation operators in terms of the
generators of %4 (2, R ):

at=DN2€+n]""2 (7.8a)
a=[26°+n]""g" (7.8b)

The results of the present section will make it possible to
express the collective part of any operator in terms of boson
creation and annihilation operators and to study under
which conditions it reduces to the predictions of the IBM.

8. OUTLINE OF THE GENERALIZATION TO ¢
DIMENSIONS

In this section we wish to determine the dynamical
group of collective states in the d-dimensional case (where
d = 2 or 3) and show how to find realizations of that group
similar to the ones described in the preceding sections for the
one-dimensional case.

For a system of 4 particles in d dimensions, the Jacobi
coordinates and their conjugate momenta are denoted re-
spectively by x,; and p,, = — id/dx,, wherei = 1,...,d, and
s=1,..,n=A — 1. Boson creation and annihilation opera-
tors, 77,, and £;;, can be defined by relations similar to Eq.
(2.1). A basis for the 4-particle states is made of the states

2R | B | A M 0

i=1s5=1
N iV 4 =0, 1, (8.1)

A dynamical group for the states (8.1) is the group of
linear canonical transformations in dn dimensions Sp(2dn,
R), whose generators are'

D,TSJ, = N Mjes isgjt = 11,...,dn,
D,, =& isgjt = 11,..., dn, 82)
E, = i(ﬂisé‘jr + §jr17is)
=C,; +46;6,, isjt=11..,dn,
where
Cip = 77is§jx (8.3)

are the generators of the U(dn) subgroup. The analog of the
chain (2.9) is
Sp{2dn, R)DU(dn)D % {d )X U (n),

(8.4)
w(d)D>70\d), U(n)DO(n)
The generators of % (d ) and U (n) are the operators
n d
Cgij = Z Cis,js’ aﬂd Csl = z Cis,il’ (85)

s=1 i=1
respectively. Those of . #(d ) and Ofn) are the angular mo-
mentum operators L; in the d-dimensional space and the
operators A, defined in Eq. (2.7), respectively.
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The states (8.1) belong to one of two IR’s of Sp(2dn, R ),
(1) or (4"~ '3) according to whether the total number of
bosons A" = 3¢_ | 2"_ | A, is even or odd, and to the
IR[.4] of U(dn). By taking appropriate linear combinations,
they could be classified according to the other groups of the
chain (8.4). The IR’s of % (d ) and U(n) contained in the IR
[#] of U (dn) are characterized by the same partition
[A,...h, ] of A, where p = min(d, n). Those of *Z(d ) and
Ofn) are specified by L and A respectively, where A denotes a
Youngdiagram (4,...4,, ,,). Some additional quantum num-
bers may now be necessary to complete the classification of
the states.

The collective A-particle states belong to the IR A = (0)
of O(n). To form invariants from the boson creation opera-
tors, we now have at our disposal d vectors 5, s = 1,..., n,
corresponding toi = 1,...,d. The basic invariants of O(n) that
can be formed from them are their scalar products
27\ 757 where i<j = 1,...,d."® A basis for the collective
states therefore consists of the states

b [T (S 2ems) 10, (8.6)

=1 \s=1
depending upon id {d + 1) quantum numbers N, i<j = 1,
...sd, which can take the values 0, 1, ... .
The properties of the states (8.6) are most easily dis-
cussed in the framework of the chain

Sp(2dn, R )3 % 4(2d, R )X Ol(n),
(8.7)
424, R\ D% d) DL 0d),
where .#4(2d, R ) is the group of linear canonical transfor-

mations in dn dimensions conserving the O(n) symmetry.**
Its generators are the operators

‘@E = o NisVjs» ij=1,.., d,
'@ij = Zl é—isé-js’ l<]= 1,..., d,
{ A (8.8)
gij = 7 gl (nisé—js + é-jsnis)
iy n ..
=%, + -2—61.}., Lji=1,..,4d,
and satisfy the following commutation relations:
(€0 &y 1=86:8; — 8,8,
[gijy g;tf ] = 6jx"°@z' + 5[[‘@3,
8 D= —6:.D; —6;D,,
(8.9)

[g};! gltj' ] = [glj’ gff] = 0’
(25, D) 1=6:8, 46,8

+8; %, +8;%,,.
The weight generators are the operators &, i = 1, ...,d. The

basic collective states (8.6) can be rewritten in terms of the
operators Z}; as

6w T (@510

if=1

(8.10)
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They belong therefore to a single IR of #4(2d, R ), charac-
terized by its minimum weight {(n/2)?) corresponding to
the vacuum state |é,.) = |0).

The dynamical group of collective states is the restric-
tion of “4(2d, R ) to the IR(0) of O(n). It is generated by the
operators

DS =P DD, iG=1,..d,
gc = ,@ @.@ y < = 1,..., d,
A S 8.11)
and
g;:,@‘:g[j.@c, i,j=1,...,d,

where as before 7 _ is the projection operator onto the col-
lective subspace and we may drop one of the 7, operatorsin
the definition of Z, &5, and &,. As the operators (8.11)
satisty commutation relations similar to Eq. (8.9), the dyna-
mical group of collective states is a symplectic group in 2d
dimensions, which we denote by .4 (2d, R ). In the case of
the hypothetical two-dimensional space considered in Refs.
3 and 4, we get here the group .4 _{4, R } which is locally
isomorphic to the group SO(3, 2) found in those papers. Our
general result shows that when going to the physical three-
dimensional space, the dynamical groups becomes
Fh.l6,R).

As in Refs. 3 and 4 the projection onto the collective
subspace was partly discussed in terms of the rotation group
SO(n), it is worthwhile to examine what happens when we
replace O(n) by SO(n) in the preceding discussion. The basic
SO(n) invariants that can be formed from the d vectors 7,
(s=1,..,n),i=1,..d, include the determinants

Niv My = Mg
At M2 M2 T2
171'," 77:‘271 e ni,,n

1<ty <iy < <i,<d, (8.12)

in addition to the scalar products Z7_ | 7,7,

i<j = 1,...,d.'"® As those determinants only exist when d>n,
we conclude that all the SO(n) invariant states remain invar-
iant under O(n) whenever the number of particles 4 is large
enough to fulfill the condition n = 4 — 1 > d. In the latter
case, the collective states and their dynamical group may be
studied in terms of either O(n) or SO(n).

When d>n however, one must be cautious in using
SO(n) instead of O(n). Fortunately, the condition d»n is only
fulfilled in three borderline cases: those of three particles in
two dimensions (d = n = 2), and of three or four particles in
three dimensions (d = 3, n = 2 or 3). Let us construct a basis
for the SO(n) invariant states in these three cases. By using
the relation

oy o, - 9,
2t 2! - 9%

At A, =17 = L (8.13)
7 D - 9,

the product of any two determinants (8.12) can be reex-
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pressed as a polynomial in the operators & ; , S0 that the total
degree of the basic SO(n) invariant states in the determinants
4! . may be restricted to the values zero and one. In the

former case, we get the states (8.10), and in the latter one the

states

d
at J1

=1

1)Y0), where 1<k, <<k, <d,

and N; =0,1,.., i<j=1,.d. (8.14)

As seen before, the states (8.10) can be generated from
the vacuum state by application of the generators of % 4(2d,
R ) and belong to a single IR of the latter, namely (12), (13),
or (¥’) according to whetherd =n =2,d =3and n = 2, or
d = n = 3. Inthe same way, all the states {8.14) can be gener-
ated from one of them, which is of minimum weight with
respect to /4(2d, R): 41,|0), 4 1,]0), or 4 1,,|0) accord-
ing to whetherd =n=2,d=3andn=2,ord=n=3.
They therefore belong to a single IR of .#4(2d, R ), which is
(2%), (12%), or (3*), respectively. In conclusion, the group
% 4(2d, R ) separates the SO(n) invariant states into two
classes corresponding to two inequivalent IR’s of . 4(2d,
R ):the O(n) invariant states on one hand, and the pseudosca-
lar states on the other hand. Projection onto the collective
subspace can be made in two different ways: either using
Ofn) directly, or in two steps, first using SO(r) and then dis-
carding the pseudoscalar states as in Ref. 3. In any case,
however, %/ (2d, R ) is the dynamical group of collective
states as mentioned before.

As in the one-dimensional case, it is possible to find
three explicit ways of carrying out the projection onto the
collective subspace. First by considering the A-particle states
in the Schrodinger representation, we get a Hilbert space 77,
whose collective supspace is denoted by 7%”.. The projection
onto 7, is carried out by using the Dzublik-Zickendraht
transformation in d dimensions, which can be written as?

ZPz

i=1
wherep}, ..., p5 are connected with the principal moments of
inertia of the A-body system, 6,, ...,6, aretheg =1d (d — 1)
Euler angles taking us from the frame of reference fixed in
the body to the one fixed in space, and &, ...,a, are the
remaining = d [n — }(d + 1)] noncollective variables. In
Eq. (8.15), the matrices ||D ;(6,,..., 6,)|| and ||D ;(a)]| are
d X d and nX n matrices defining the IR characterized by 1
ofthe .’ &7 (d ) and SO(n) groups, respectively. In writing the
transformations, we have implicitly assumed that we are in
the general case where n > d, for which O(n) may be replaced
by SO(n). For the three borderline cases for which n<d, one
should use an IR matrix of O(n) instead of SO{n), and we
refer the reader to Ref. 2 for the corresponding detailed ex-
pression of the Dzublik—Zickendraht transformation. When
realized in 577,, the basic collective states (8.10) are repre-
sented by square-integrable functions ¢, (P15 Pus
6,,-.., 8,), and the generators of their dynamical group de-
pend upon p;..., Pg, 6y,..., 8, 3/3p,,..., 3/3p,,3/36,,...,
d/d6,. In the two-dimensional case, one should find the re-
sults of Refs. 3 and 4 again.

Second we can also represent the 4-particle states in a

6D i@ a,)s (8.15)
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Bargmann Hilbert space # of entire analytic functions in dn
complex variables z,, wherei= 1, ....d,and s = 1,...,n. A
basis of that space consists of the functions

7] T 7 12,
Yo BrZan) = H H [(-/Vis!)_ Z;s ,,])

i=1s=1

N s N an =0,1,....  (8.16)

The boson creation and annihilation operators 7, and £, are
represented in .# by z;; and 3 /dz,,, respectively. Conse-
quently, the generators of % 4(2d, R ) are realized in .# by
the operators

@Il = Zl ZisZ s IQ = 1,...,d,
@ 7 62
= ) <= 1,...d,
1= 2 50, i< 8.17)
: d n
= 2y —+—06, ij=1,.4d.
s;l 3zj, 2 Y j

Complex collective variables can be easily constructed
from the dn variables z,; by noting that the latter can be
grouped into d vectors with respect to O(n), corresponding to
i =1,...,d. The complex collective variables are therefore the
v =1d(d + 1) scalar products of those d vectors,

Zzﬂj‘, i< =1,.4d.

s=1
The analytic functions in these v variables form the collec-
tive subspace % , of %, which may be equipped with a scalar
product making it into a generalized Barut Hilbert space.
The functions

(8.18)

d
I w™ (8.19)
igj=1
representing the states (8.10), form a basis of .7 _.
The realization of the dynamical group . (2d, R ) in
F . 1s also very easy to obtain. For that purpose, we have to

retain in Eq. (8.17) only the part depending upon w ..., W4y,

¢_N N (W1 Wag )
1" dd

3/6w,,,....0/3w,,. By proceeding in that way, we straight-
forwardly get

"O}if = Wy,
Z; _Z( + 8 )1 + 6 hwy, ‘L'*‘n(l +5ij)is

kT Ow,, Ow; ow;
(8.20)

and

5= S (1 +8lwy s+ 25,

k 8wjk 2

As in the one-dimensional case, we could establish a unitary
mapping between 7. and % _ and define coherent collec-

tive states in .7 _.
Finally, we can also implement the projection onto the

space of collective states by considering a generalized Hol-
stein—Primakoff representation of their dynamical group.
That representation establishes a connection between the ba-
sic collective states |¢y, , ) and the eigenstates of a v-di-
mensional harmonic oscillator, where v = } d (d + 1), by in-
troducing v boson creation and annihilation operators, a,
and a,,, a = 1,...,v, in terms of which the generators of
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#4.(2d, R ) can be expressed. The a, and a,, operators can
be used to define the generators

€Cp=alag, a,B=1,.., (8.21)

of the 11(v) symmetry group of the v-dimensional harmonic
oscillator. Inversion of the generalized Holstein—Primakoff
representation leads to the expression of the operators €, in
terms of the generators of the ¥4 _(2d, R ) group. Actually
the generalized Holstein—Primakoff representation of the
group Sp(4, R ) has been explicitly worked out by Mlodinow
and Papanicolaou in another context.?? Their results can be
directly used to study the link between .¥4_(4, R ) and the
11(3) group of the IBM in two dimensions. In a similar way
we could study the relation between .4 (6, R ) and the 11(6)
group of the IBM in three dimensions.

We plan to implement in subsequent publications the
step briefly described in the present section. Another point of
interest to be considered later is the projection of the collec-
tive Hamiltonian from an arbitrary 4-nucleon Hamiltonian.
As was shown here for the generators of the dynamical
group of collective states, that projection might be easier to
carry out in the Barut representation than in the usual
Schrodinger representation.

As a final point, let us mention that the dynamical
group of collective states, as derived in the present paper,
could be used to establish some connections between the
O(n) invariant collective model and the symplectic shell
model of collective motion developed by Rosensteel and
Rowe.?* The latter is indeed based upon the . 4(6, R ) group
[Note that the authors of Ref. 23 use the notation Sp(3, R )
instead of Sp(6, R )], from which the dynamical group
F4.(6, R ) is projected out.

Note added in proof: After completion of the present
work, A. O. Barut and M. Moshinsky pointed out to us that
the Holstein-Primakoff representation of Sp(2, R ) was al-
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In this paper we investigate certain first order partial differential equations which formulate the
relationship between the light reflected from a surface and its shape. Particular emphasis is given
to eikonal equations. Two results are presented. First, we prove that a special type of eikonal
equation has only one convex and positive C ? solution in some neighborhood of a singular point.
Using this result, we show that a restricted form of this equation has exactly two solutions. These
results have application in scanning electron microscopy.

PACS numbers: 42.10.Fa, 42.30.Va, 42.30.Di
1. MOTIVATION

How much information about the shape of an object
can be inferred from its image? We are interested in a special
aspect of this question: the reconstruction problem, which is
to determine the shape of an object from measurements of
the light reflected from its surface. Our work is based on
Horn’s thesis.' He formulated a set of conditions (which are
discussed in the next section) which lead to a relation be-
tween the perceived brightness of a small patch of a surface
and its normal vector. This relation, the image irradiance
equation, is a first order partial differential equation (abbre-
viated in the following by FOPDE) and each of its solutions
determines the shape of an object. The problem of finding
solutions to the image irradiance equation is referred to in
the literature as the shape from shading problem.

We will take two approaches towards finding a solution
to the shape from shading problem termed as the /ocal and
the global approach. By the local approach we mean that
only a small patch of an image is used to determine the shape
of a surface. To the contrary, in the global approach we ex-
amine images in which a silhouette can be detected (here we
refer to the outline of an image as a silhouette).

Intuitively, it seems clear that by looking at an image in
which a silhouette can be identified we should be able to
conclude more about the shape of a surface whose image we
are analyzing than by just looking at a little patch. We will
show that from certain images which contain a silhouette we
can uniquely infer the shape of the surface which gives rise to
that image. Unfortunately, the global approach is not always
satisfactory; there are also many images containing silhou-
ettes which could be the images of infinitely many different
surfaces. There are also infinitely many surfaces which local-
ly look the same. So we will determine conditions under
which the global approach is better than the local approach.
Notwithstanding, one can sometimes draw interesting con-
clusions about the shape of surfaces which give rise to the
same image by just looking at a small patch of this image.

The local approach is taken to an extreme when we pose
the following question: What can be deduced about the
shape of a surface from so-called singular points of an image
irradiance equation? At these points the surface normal to

“Present address: IBM T. J. Watson Research Center, P.O. Box 218, York-
town Heights, New York 10598.
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all solutions to such an equation is uniquely determined by
the brightness there. We investigate the above stated ques-
tion for a certain class of image irradiance equations, the so-
called eikonal equations, which describe a variety of physical
phenomena. For instance, experimental data suggest that
the flux of secondary electrons in a scanning electron micro-
scope can be described by an eikonal equation.” By using
these secondary electrons to modulate the appropriate de-
vices, an image of a surface is created by the microscope.
Such an image exhibits shading (Ref. 1) and therefore to de-
termine the shape of a surface from its image one effectively
has to solve an eikonal equation. In the case of eikonal equa-
tions, we show that the absolute value of the Gaussian curva-
ture at a singular point of all surfaces which give rise to a
particular image, is the same. Furthermore, assuming that
the surface is convex at a singular point, we show that its
shape can be uniquely determined in some neighborhood of
such a point from the image intensities alone.

The other aspect of the shape from shading problem
which we explore is its solution when the image contains a b-
silhouette (which is defined below). In this case a global ap-
proach is taken. Let us first define the bounding contour of a
surface: a point P is on the bounding contour if the line con-
necting the viewer and P grazes the surface (i.e., if this line
lies in the tangent plane of P). Furthermore we assume that
no two parts of a surface obscure each other, i.e., we assume
that the bounding contour is not an occluding contour. The
image (assuming orthographic projection) of a bounding
contour will be called the b-silhouette. The surface normal at
a point on a bounding contour is parallel to the normal vec-
tor to the b-silhouette and both vectors lie in the same plane.
Thus, some or all of the first order partial derivatives of the
function defining the surface are infinite for points on the
bounding contour (we will say that some components of the
surface gradient are singular along a curve).

For example, the bounding contour of a hemisphere
lying on a plane is a circle. Consider a Lambertian surface,
which has the property that each surface patch appears
equally bright from all viewing directions. If we look at a
Lambertian hemisphere such that the viewer and the light
source are at the same point, its b-silhouette can be deter-
mined from its image. In this case the image irradiance equa-
tion describing the imaging situation is singular and all the
surfaces which satisfy such an equation have a bounding
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contour. (In Sec. 4 we extend the notion of a singular func-
tion to equations.)

As the image irradiance equation is a FOPDE, it does
not, in general, provide enough information to solve the re-
construction problem uniquely. It remained an open ques-
tion whether there are any imaging situations for which ev-
ery surface gives rise to a different image. As indicated
before, taking the global approach towards finding a solu-
tion to the shape from shading problem allows us to answer
this question affirmatively by proving a uniqueness result for
a class of eikonal equations.

2. THE SHAPE FROM SHADING PROBLEM

There are basically three components to the shape from
shading problem which must be taken into account. They
are the light source, the object, and the camera as depicted in
Fig. 1, which is taken from Ref. 3, p. 32, and are termed an
imaging configuration. Henceforth, we will assume that an
image of a surface is produced by a camera. The shading of
such an image can be explained as follows. The exposure of
film in a camera (for fixed shutter speed) is proportional to
image irradiance, the light flux per unit area falling on the
image plane. Similarly, grey levels measured in an electronic
imaging device are quantized measurements of image irradi-
ance. It can be shown that image irradiance in turn is propor-
tional to scene radiance, the light flux emitted by the object
per unit projected surface area per unit solid angle.* The
factor of proportionality depends on details of the optical
system, including the effective /-number. Scene radiance de-
pends on the

@ surface material and its microstructure,
@ the incident light flux, and
@ the orientation of the surface.

Now we want to relate the shape of a surface to the
shading of its image. Consider a viewer-oriented coordinate
system with the viewer located far above the surface on the z-
axis. If the objects imaged are small compared to their dis-
tance from the viewer, one can approximate the imaging sit-
uation by an orthographic projection:

V=yf/z, (2.1)
where (X,7) are the coordinates of the image of a point (x,y,z)
made with a system of effective focal length £, and the viewer

X = xf/z,,

LIGHT
SOURCE
G i,
SURFACE > O’_
NORMAL P z
1 A%

CAMERA

i%

FIG. 1. Imaging configuration.
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is at a distance z,, above the origin. We assume that

(x* + y* + %)<z} For simplicity and without loss of gener-
ality it is also assumed that the viewing direction coincides
with the z-axis.

The orientation of a patch of a surface can be specified
by its gradient ( p,q, — 1), where p and q are the first order
partial derivatives of z with respect to x and y. For a given
surface material and known incident light flux, scene radi-
ance will depend only on surface gradient. The function
which describes this dependence, R ( p,g), is called the reflec-
tance map.

Recall that image irradiance and scene radiance are
proportional and that we assume orthographic projection. If
E (x, y) is the observed image irradiance at the point (X,J) in
the image, then

Ripq =Eixy) (2.2)

where ( p,q) are two components of the gradient at the corre-
sponding point on the object being imaged. This equation is
called the image irradiance equation. Unless otherwise stat-
ed, we will assume that the functions R ( p,q) and E (x,y) are
C'. We will refer to image irradiance equations of the form

P+ ¢ =Exy) (2.3)
as eikonal equations.

In general, at a point {x,y) in the image plane, the gradi-
ent is constrained by an image irradiance equation to a one-
parameter manifold. Only at so-called singular points does
the measured image intensity uniquely define the surface
normal there and we will investigate such points further. We
now give some relevant definitions.

Definition: Let R ( p,q) = E (x,y) be an image irradiance
equation. Then a point (x,, Yo, Posqo) I8 a critical element if
(x0, Vo) is a stationary point of E (x,y) and ( p,,q,) is a station-
ary point of R ( p,g).

The point (x,, Vo, Po,90) 18 a critical point of the image irradi-
ance equation if it is a critical element and if the values

{x0s Yos Pos90) satisfy the image irradiance equation.

The point (xo, Yo, Posqo) is a singular point if it is a critical
point for which the values ( p,,4,) are uniquely determined by
the values (x4,0)-

A point Pis an isolated critical element if in some neighbor-
hood ofit, it is the only stationary point of E (x,p) and R ( p,g).
Isolated critical (singular) points can be defined similarly.

3. SINGULAR POINTS

The question addressed in this section is: How much
information about the shape of a surface can one obtain from
asingular point of an eikonal equation? To obtain our results
we will impose some technical conditions upon E (x,y) and
thus define constrained eikonal equations.

Definition: An eikonal equation p® + ¢*> = E (x,) is con-
strained if E (x,p) is a C* function satisfying the following
conditions in some neighborhood of the point (x,y,):

(1) (x4.p0) is a stationary point of E (x,y),

(2) E {xgy0) = 0, (3.1)
(3) E (x,) > O for (x,p) # (x0.00),

{4) E (x,y) vanishes precisely to second order at (x,,p,)-
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Let us discuss these conditions a bit further. Since the
reflectance map of an eikonal equation is R ( p,q) = p* + ¢°,
the point P = (x, y, p,q) = (xq, ¥0,0,0) is a critical point of a
constrained eikonal equation, whence it follows from condi-
tions 2 and 3 that P is an isolated singular point. By using a
suitable linear transformation we may assume, without loss
of generality, that the point (0,0) is the stationary point of
E (x,y). We will denote the (limited) Taylor series expansion
of E (x,y) as

E{xy) = ax® + Bxy + wp* + O(|x| + |y|)?). 3.2)
Since E (x,y) is assumed to be positive near the origin,
ax® 4+ Bxy + yp*>0 for (x,y)#(0,0) (3.3)

defines a positive bilinear form. Thus the subsequent in-
equality (Ref. 5, p. 182) holds:

ay —fB?%/4>0.

Moreover, a and y must be positive.

The first result which we prove in this section is formu-
lated in the following theorem.

Theorem: Let p* + ¢* = E (x,y) be a constrained eikonal
equation. Then there exists a unique locally convex solution
in some neighborhood of the singular point.

The theorem can be expressed in other words as: If z = z{x,y)
defines one locally convex solution, then Z = — z(x,y) de-
fines the other. Hence this result can be viewed as a unique-
ness result modulo the concave/convex ambiguity. To sim-
plify subsequent discussions, we will say that z(x,y) is a
locally convex solution to a constrained eikonal equation if it
satisfies the following positivity conditions in some neighbor-
hood of the origin:

(1)2(0,0) =0,

(2} z(x,y)eC?,

(3) 20x,$)>0.

Before proving this theorem we introduce some rel-
evant concepts and show a lemma.

Definition: Let p* + ¢* = E (x,p) be a constrained ei-
konal equation and let £ denote the four-tuple (x, y, p,g). In

some neighborhood of the singular point, the characteristic
equations can be written as

(3.4)

(3.5)

d
% _ sz 3.6
dt
where A is the four by four matrix
0 0 2 O
0 0 0 2
= 3.7
4 20 B 0 O (
g 2y 0O O
and where G has the following properties:
(G §)eC?,
2)G(0)=0, (3.8)
aG
3)—(0)=0.
(3) 9% (0)

Every solution & = £ (¢} to (3.6) is called an orbit. The
equation
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e

dt

is called the linearized characteristic equation. An orbit
& = &(t) is quasiradial if

(3.9)

lim £(t)=0.

e )

Lemma: Let p* 4+ ¢* = E (x,y) be a constrained eikonal
equation. If a locally convex solution exists in some neigh-
borhood of the singular point, then it is swept out by quasira-
dial characteristic curves.

Proof: Suppose a locally convex solution z = z{x,y) ex-
ists. Asz = z(x,p) is assumed to be C 2, we can write pand g in
some neighborhood of the singular point as

(3.10)

p=a;x+ayuy+ox|+ |yl

g =ax +ayy +of|x| + |y)), (3.11)
where thea i for i, j = 1,2, are constants. Since the origin is
a singular point, p and ¢ have no constant terms. Note that
the Gaussian curvature X of z = z{x,y} at the origin is given
by

K =a,a, —~aj,. (3.12)

Substituting the expressions (3.11) into the first two charac-
teristic equations of a constrained eikonal equation gives

dx

“;t_=2(anx+any)+o([x|+IYU» (3.13)
%=2(alzx+az7)’)+o(|x| + )

Using a standard theorem from the theory of ordinary differ-
ential equations, the so-called node theorem, we deduce that
the characteristic curves are quasiradial if and only if both
eigenvalues of the linearized equations have the same sign
(Ref. 6, p. 213). A simple calculation shows that this is the
case only when K > 0. Assuming that X > 0, the sign of the
eigenvalues is the same as the sign of a,, or equivalently of
a1

Proof of theorem: We have to show that alocally convex
solution to a constrained eikonal equation exists and is
unique. This is achieved by showing that the unstable mani-
fold is the locally convex solution. It follows from the pre-
vious lemma that if such a solution exists, it is swept out by
quasiradial characteristic curves. To prove its existence, we
investigate the linearized characteristic equations (3.9) of a
constrained eikonal equation. An easy calculation shows
that the matrix 4 has two positive real eigenvalues and two
negative real eigenvalues. Thus, we can apply the stable
manifold theorem which states that there exist exactly two
C ? manifolds, each of which is swept out by quasiradial char-
acteristic curves (Ref. 7, p. 527 and Ref. 6, p. 242}. Hence we
can deduce that a locally convex solution exists and is
unique. From the node theorem, we get that the solution
z = z{x,y) satisfying the positivity condition is the unstable
manifold, whereas the stable manifold is the surface defined
byz= —z(xy) Il

In the case where E {x,p} is C = we can compute the

locally convex formal power series solution as shown in the
following lemma.
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Lemma: Let p? + ¢° = E (x,p) be a constrained eikonal
equation where E (x,y) is C *. Then there exists a unique,
locally convex formal power series solution to this equation
in some neighborhood of the singular point.

Proof: (outlinej Equating the appropriate terms in of a
formal power solution we obtain

@ an equation for the quadratic terms and

@ a recurrence relation for each of the higher order
terms.

First we prove that there is a unique solution to the equation
for the quadratic terms if we impose the constraints that the
formal power series solution be positive and convex. The
next step is to determine the higher order terms which is
done by inductively solving the recurrence relation. If the
quadratic terms have been determined such that the formal
power series solution is convex, each step of this induction
can be carried out uniquely. The details of this proof can be
found in Ref. 8.JJj

In the case where E (x,y) is analytic we can show the
following lemma.

Lemma: Let p* + ¢* = E (x,p) be a constrained eikonal
equation where E (x,y) is analytic. Then its formal power se-
ries solution is the solution to the equation.

Proof: A version of the stable manifold theorem proves
that if £ (x,y) is analytic, then the stable (unstable) manifold is
analytic (Ref. 9, p. 330). The lemma follows.[JJj

The second main result of this section is formulated in
the following theorem.

Theorem: Let p* + ¢*> = E (x,p) be a constrained eikonal
equation. Then at the singular point, the Gaussian curvature
of each integral surface has the same absolute value and is
determined by the (limited) Taylor series expansion of E (x,y)
at that singular point.

Proof: Recall that the curvature at the origin, denoted
by K, 1s

K =a,a,, —a},. (3.14)

Using Egs. (3.11) in an eikonal equation, we derive an expres-
sion for this curvature in terms of &, 3, and y:

K| =1 |(day —B7'"]. (3.15)
The details of these calculations can be found in Ref. 8.

4. B-SILHOUETTES

As discussed, our goal is to find sufficient constraints
such that an image can be interpreted in a unique way when
its image irradiance equation is known. We now investigate
whether the knowledge of b-silhouettes can be used to inter-
pret an image and thus study singular image irradiance
equations:

Definition: Let R ( p,q) = E (x,p) be an image irradiance
equation. It is called singular if there exist finite values for x
and y denoted by x, and y, such that

lim E(xy) = + w. (4.1)
Py

Note that the b-silhouette consists of such points (x,, y,).
In this section we will identify three constraints upon an
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image irradiance equation, one upon the refiectance map,
one upon the b-silhouette, and one upon the function E (x,p).
If these constraints hold for some image irradiance equation,
exactly one surface defined by a C? function which satisfies
the equation exists.

4.1. Uniqueness theorem
Let

R(p.q)=E (x.y) (4.2)

be a singular image irradiance equation. Consider the fol-
lowing constraints upon this equation:

(CYYR(pg)=P"+¢"

(C2) The b-silhouette defined by w(x,y) = O is a closed,
smooth curve in the x-y plane. Furthermore, the points (x,y)
at which the image irradiance equation is defined lie in the
region bounded by this b-silthouette.

(C3) The function E (x,y) has exactly one stationary
point (x,,y,) and satisfies the following conditions in some
neighborhood of (xo.yo): £ (xo:vo) = 0, E (x.p) > 0 for
{(x.p)#(x0.p,) and E {x,y) vanishes precisely to second order at
(xouo)-

Uniqueness Theorem: Let R ( p,g) = E (x,y) be animage
irradiance equation for which constraints C1, C2, and C3
hold and suppose a C ? integral surface defined by z = z(x,y)
of this equation exists. Then the only other solution to the
equation is Z = — z(x,p).

Proof: Let R ( p,q) = E (x,y) be a fixed image irradiance
equation for which constraints C1, C2, and C3 hold. First
note that the point P = (x, y, p,q) = (x4, ¥,,0,0) is an isolated
singular point of the image irradiance equation. There are
then two observations which allow us to prove the theorem.
First, as the b-silhouette is a closed curve, an integral surface
of the equation has to be compact. Second, from constraints
C1 and C3 we can deduce that such a surface is convex at the
singular point, which allows us to apply results of the pre-
vious section.

Suppose z = z{x,p) defines a C ? integral surface of an
image irradiance equation. Then from C2 we may infer that z
defines a compact surface. Note also that z(x,p) is defined at
every point (x,p) which lies within or on the b-silhouette and
therefore has a bounding contour. Thus there exists a point P
at which z has an extremum from which it follows that the
tangent plane at P is parallel to the x—y plane. From condi-
tion C3 we can deduce that there exists exactly one such
point (x,,V,,2,), i.e., P = (Xo:V0sZo)- By the assumption on
E (x,p), z is either convex at P or has a saddle point. Since Pis
the point where the surface has maximal (minimal) height, z
must be convex there.

In the previous section we proved that if an image irra-
diance equation satisfies C1 and C3, there exists exactly one
positive and one negative convex solution denoted by z, and
z, = — z,, respectively. Thus there are exactly two integral
surfaces z = z(x,p) and Z = — z(x,y). ]}

By using transformation methods, we can enlarge the
class of singular image irradiance equations for which the
uniqueness theorem holds. Let
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f\AP* +2Bpg + Cq* + 2Dp + 2Eq) = E(xy)  (4.3)

by a singular image irradiance equation where fis a bijection
and 4, B, C, D, and E are real constants such that § > 0 and
AS <0 where 8, 4, and S are defined in the following
e€quations:

5=A4C—B?,
A B D

A=(B C E|, (4.4)
D E 0

S=A4+C.

The constraints upon the constants 4, B, C, D, and E in Eq.
{4.3)assurethat thecurves R { p,q) = ¢, forany constantc, are
closed. Let the b-silhouette of the equation be a closed and
smooth curve. Then (4.3) can be transformed into an image
irradiance equation of the form (4.2) for which C2 holds. If,
after the transformation, the function E (x,y) satisfies C3,
then the uniqueness theorem holds for (4.3).

The next corollary follows directly from the uniqueness
theorem in this section. We will abbreviate (x? + y?)'/2 by 7.

Corollary: Let p* + q* = E (r) be an image irradiance
equation where E {r) satisfies constraints C2 and C3. Suppose
a C?integral surface of this image irradiance equation exists.
Then it is rotationally symmetric and can be obtained by
integrating E {r). In this case the b-silhouette is a circle.

Proof: First we write the eikonal equation in polar
coordinates:

224+ 1/ =E(r). (4.5)

Let Z = Z{r) define the rotationally symmetric integral sur-
face of the above eikonal equation. Thus Z,(r) = 0 and we
can compute both rotationally symmetric solutions by inte-
grating + V'E (7). It follows from the uniqueness theorem
that the image irradiance equation has no other solutions.Jjij

Note that the above corollary is false if we omit the
condition that the image contains a b-sithouette. The inte-
gral surfaces of a continuous rotationally symmetric eikonal
equation are not themselves necessarily rotationally
symmetric.

4.2. Counterexamples

In the previous section we discussed sufficient con-
straints under which the solution to a singular image irradi-
ance equation is unique. Are these constraints necessary?
Although we are not able to answer this question complete-
ly, we now shed some light upon it. In particular, we will try
to find the class of image irradiance equations for which
most likely there is no set of constraints that assure the exis-
tence of only one global solution.

Image irradiance equations satisfying the constraints of
the uniqueness theorem have closed iso-brightness curves,
i.e., the curves R { p,g) = c are closed. Let us now examine
singular image irradiance equations whose iso-brightness
curves are not closed. One such image irradiance equation is
given by

pHg= —x+p/(1 -+ {4.6)
While constraint C2 holds for {4.6), an image irradiance
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equation whose reflectance map is R ( p,g) = p + ¢ never has
a singular point. The general solution to (4.6) is
zxp) = (1 — (¢ + %) + wly — x), (4.7)
where w is any C ' function. Figures 2 and 3 illustrate some
solutions to Eq. (4.6).
Another example of an image irradiance equation
whose iso-brightness curves are not closed is
pg = xp/(1 — (x* + p?)). (4.8)
This equation satisfies constraint C2, i.e., its b-silhouette is a
closed and smooth curve. Furthermore the origin is the sin-
gular point of (4.8) and E (x,y) vanishes precisely to second
order there although E (x,y) is not positive in the neighbor-
hood of (0,0). One of the solutions to (4.8} is the sphere
z2lx,p) = (1 = (x* + y?)' "2, (4.9)
whereas another surface satisfying (4.8) is
2lx,p) = f(e)+ x* =3,
where
t=1—(x"+y7
and
fle)=1t(1/4: + 1)''2 + i[In((1/4 + 1)'/7 + 1)
— In{(1/4¢ + 1)"2 — 1)} (4.10)
Recall that constraint C2 expressed the fact that the b-
silhouette is a closed and smooth curve. We now demon-
strate that if the b-silhouette does not obey C2, our unique-
ness result does not hold. An example of an equation for
which C1 holds, but whose b-silhouette is not a closed curve,
is
pPP+gi=1/4x+ 1. (4.11)
Equation (4. 11) does not have a singular point. A solution to
this equation is
z(xp) = Jx + ), (4.12)
which is shown in Fig. 4. Two other solutions to (4.11) are

FIG. 2. zx,y) = (1 — (x* + y2)'/%
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FIG. 3. zx,9) = (1 — (6 + 313 + (p — %),

o=+ ) (1))
) )

2x,y) = uit —28x))”2 - 4‘1/2 arctan ((8% - l)m)

+(3)"/%. (4.13)
Only when the b-silhouette is a closed curve can we deduce
that a surface is convex at the singular point, an observation
which allows us to prove the uniqueness theorem. For the
following eikonal equation we give two solutions only one of
which is convex:
2 2

2 2
+4¢°= . 4.14
Pra =" o (4.14)
Equation (4.14) has a singular point and it satisfies con-
straints C1 and C3. Two solutions to this equation are

z{x,y) = arcsin{xy),

z(x,p) = (1 — xHA)V2 + (x — y?)/2. (4.15)

5. CONCLUSION

In this paper, we have investigated the question of how
much information concerning the shape of an object can be
deduced from its shaded image. Even assuming that ade-
quate data is available to derive an image irradiance equation
is insufficient to solve the reconstruction problem uniquely;
in general, for a fixed imaging configuration there are many
surfaces which have the same shaded image. Thus our goal
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FIG. 4. z{x,y) = |Jx +J.

has been to identify constraints by which the reconstruction
problem can be solved uniquely.

We discussed how singular points of an eikonal equa-
tion constrain its possible solutions. In particular, we proved
that for any eikonal equation of a certain type there exists a
unique (up to translation in the z direction) positive convex
surface which satisfies the equation in some neighborhood of
a singular point.

However, our ultimate ambition was to answer the fol-
lowing question.

Is there a set of constraints which assure that if animage
irradiance equation has a solution, it is unique?

We answered this question affirmatively in Sec. 4. It was
shown there that if three constraints on an image irradiance
equation are known to hold, the information about the imag-
ing situation and the surface as captured by this equation
allow one to reconstruct the shape of the surface uniquely.
Furthermore, one can easily check whether an image irradi-
ance equation satisfies these constraints. It is surprising that
our uniqueness theorem holds only when the b-silhouetteis a
closed curve (constraint C2).

In order to evaluate the usefulness of our uniqueness
theorem, we need to know which of the commonly arising
image irradiance equations actually obey the above men-
tioned restrictions. In his paper on hill-shading,'® Horn dis-
cusses eighteen different reflectance maps which are applied
to solve that problem. Constraint C1 holds for five of those
reflectance maps. These equations are of the form

R(pg)=f(P+ 4 (5.1)

where fis a bijection. A reflectance map of the form (5.1)
describes, for instance, the situation where the object is Lam-
bertian and the light source and the viewer have the same
position. In addition, eikonal equations can be used to auto-
matically analyze images taken by a scanning electron
microscope.
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The modal solution to a biconical receiving antenna with arbitrary arm angles and lengths is
presented in the form of sums over special functions; sums which are exact in the sense that no
electromagnetic approximations are made. The antenna load is confined within a sphere of small
radius centered at the apices of the cones. The analytical formulation is presented, along with
solutions for ¥ very small and very large, and certain selected numerical data. The general
solution permits calculation of all detailed fields near and far, both receiving and transmitting
current modes on the antenna arms and caps and the power and the momentum absorbed by the
antenna from an incoming plane wave. It is shown that the receiving current modes are
necessary for electromagnetic momentum to be conserved during power reception. Detailed
calculation of comparative receiving and transmitting admittances confirms that they are
identical, as predicted by the reciprocity theorem. The radiation patterns, however, for
retransmission during reception and for transmission differ.

PACS numbers: 84.40.Af, 02.30.Lt

I. INTRODUCTION

The receiving antenna parameters of radiation imped-
ance and radiation pattern commonly are found by finding,
first, the properties the antenna would have were it transmit-
ting and, second, by using reciprocity to show that these
properties carry over to receiving. Although thereis no ques-
tion of the validity of this approach, a detailed, modal, and
mechanistic view of the functioning of a receiving antenna
may still be of interest. For example, although integral ex-
pressions give quite accurate results for linear, cylindrical
receiving antennas, '~ still, exact solutions are available only
for vanishingly small or limitlessly large ones, in contrast
with the solution presented here which is electromagnetical-
ly exact for a biconical receiving antenna of arbitrary arm
length and cone angle. Results are given as sums over an
infinite series of special spherical functions, with certain
ones selected for numerical analysis.

This work is a direct extension of previous work on
biconical transmitting antennas.®~® For the first time it pro-
vides, for a receiving antenna of arbitrary size, expressions
for all fields near and far, surface currents on the antenna
arms and caps, power and momentum transfer between field
and antenna, and a direct confirmation of the reciprocity
theorem. As a specific example of its potential use, even van-
ishingly small dipolar antennas, when properly loaded, ab-
sorb power from a fully directed, correctly polarized wave,
and presumably time reversal of all currents would result in
the same dipole transmitting a fully directed wave. The solu-
tion presented here permits the calculation of the currents
needed for such a result to be obtained.

The antenna analyzed is centered at the origin of co-
ordinates, and is spherically capped, symmetric, and biconi-
cal with arms of length a and half-angle ¥, see Fig. 1. The
center load is a uniform, spherical one centered on the origin

and of radius b, which is a small fraction of a wavelength, i.e.,
kb<«l.
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Space surrounding the antenna is divided into three re-
gions, see Fig. 1. Region I is the spherical load, region II is a
concentric spherical volume of radius a, but excluding re-
gion I and the antenna arms. Region I1I has radius » > a, and
is empty.

It is most convenient to consider an incident plane wave
of unit electric field intensity, polarized with its electric field
collinear with the z axis and the axis of the antenna to be
analyzed. We pick its magnetic field to be collinear with the
x axis. The wave travels in the positive y direction and is
scattered by the antenna. We seek to find the absorbed pow-
er, the surface currents, the scattered field, and the force on

BICONICAL ANTENNA

REGION I Y

FIG. 1. Representation of a biconical receiving antenna with a small,
spherical load of radius b, perfectly conducting arms of length @, and half-

angle ¢. Region II contains the open area with radius < a, Region III is all
space with radius >a.
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the antenna as functions of the configurative parameters a
and ¥ and the load impedance.

Il. THE FIELDS
A.Plane wave
The incoming wave has phase exp [i{w? — ky)]. In

spherical coordinates and with suppressed time dependence
the spatial phase dependenceis exp ( — io sin @ sin ¢ ), where
o = kr, 8 = polar angle measured from the z axis, and ¢ = a-
zimuth angle measured from the x axis. Expanding the phase
factor in terms of spherical Bessel functions of integer order

Ji{o), and associated Legendre polynomials P ["(cos 8), it is
shown in Appendix A [see (A1}-(A14)] that

exp( — io sin @ sin ¢ )

o I Cm
=YY 1(I+ 1) —j(0)P ] cos m¢
2 0 m

le me

_SSI+

lo mo

Clm . .
1) - Jilo)P T sin mg, (1)

where
- 2m(21 4+ 1)l — m\\U (m)8(/ + m,2q) ’ )
" 201+ 1) + m/20 [ — m/2]!
where U (m) is the step function
Uim)=0 form«<0,
=1 form=0, (3)
=1 form>0,

where & is Kronecker’s delta function as defined in (4), and ¢
is any integer,
S5(l+m2q)=1 forl+ meven,
=0 for!/+ modd, (4)

and subscripts o and e below the summation indicate, respec-
tively, only odd or even values are to be taken for the summa-
tion index indicated. This redundant notation assists in later
integral evaluations. Equations {1}—{4) lead to the radial
components

E, = ZZI(I+1)D,,,,'—II(—)P"‘cosm¢
Jilo) -
—zzzl(1+1u),m——P sin mé (5)
o, =300+ 1)c, 12 IO) pm cos me
iy Jio) o
1221 (I + 1)C,, —P sin m¢ {6)

le me

-
E, = zlem(Jl +BImHI)
1

lo me le mo
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cos m¢ — 12 ZD,,,.(JI +/91mH1)

where 7 = wave impedance and it is shown in Appendix A
(A15)-{A34), that

_ 42 +1) (I —mMU(m) 8+ m2q + 1)
T+ 1) W =1 +m/21 (I~ 1 — m)/2]!
(7)
and
S(l+m2g+1)=1 forl+ modd, 8)

=0 forl+ meven.

The angular fields follow directly from the radial ones, and
complete the set for a y-directed, z-polarized plane wave.

B. Scattered field

The formal description of the scattered wave has two
differences from that of the plane wave: the spherical Bessel
functions j,{o) are replaced by spherical Hankel functions of
the second kind A,(c), where

h,(o) =ji{o) — iy)(0), 9)
where y, (o) are spherical Neumann functions and the con-
stant field parameters may be different from those of the
plane wave. It is convenient for what follows to define two
sets of constants a,,, and 3,,, . In these terms, the radial com-
ponents of the scattered field are described by (10) and (11).

1()

E = ZEIU+ 1D, By ——— P cos mgb
lo me
’ZZI(H' 1)D,,.Bim ——I(——)P"'sm mé, (10)
le mo -
221 (I + HCpmayy, hilo )P"‘cosm¢
lo mo
“"iil(l*' 1)Cp ,%(Tf—)P;" sin mg. (11)
le me

C. Total field, region 1l

For the total field, the radial components are the sum
of (5) and (10) and of (6) and (11). For the angular compo-
nents, it is convenient to define two additional sets of radial
functions J,(0) and H, (o), where

Jio)= + 2 [gj(0)] (12)
o do
and
Ho)= i -d— [a'h,(a')]. (13)
o do

In these terms, the total fields in region III are described by
the following equations.

m

sin m¢ (14)

Dale M. Grimes 898



m

mP[
sin me,
oo Snmé

- ZZCI,,, Ui +amh ) cos me + 122(],"'(], +a,h )
le me 10 o ]
nH, = — iig Dy (Ji + Bimh )d; cos mé — Z Z Dy s+ Buk )dP sin s
fo me o mo
- ii::;clm(-’[ + a,,,.HI) n 0 cos m¢ — EEC,M(J, + almHI) r sin md,
e me Io mo
—E, = Z EDlm(Jl +B,,,.H,) sin m¢ + lzlem(Jz + B, H) P; cos md 19

1
lo me

- zzclm(.]l +a.h )

Ie me io mo

”HG = _lz ZDIm(.’I +ﬁ1mh )

Io me le mo

Ie mo

sin m¢ —

& ! dP;n . o | H dPI
—'lggclm(‘,l +aImHl)76—51n mé +;;C1m(‘]l + a,, 1)_‘1_9'

le me lo mo

D. Total field, region Il (References 6-9)

Since the antenna arms exclude all fields within angle ¢
of the z axis, the appropriate mathematical functions to de-
scribe the fields are associated Legendre ones of integer or-
der m and noninteger degree v,

Plcos@) and P7{—cosb), (18)

multiplied by spherical Bessel functions of the first and sec-
ond kind and of fractional order v,

jy{o) and j_ (o), (19)

where the order of each Bessel function is equal to the degree
of the corresponding Lengendre function. For the special
case where b, the radius of the source region, is much less
than A, the wavelength, the multiplicative coefficient of
J — .|o)issmall and, for purposes of this paper, we put it equal
to zero.

Exclusion of fields from the z axis by the antenna arms
permits the presence of a TEM mode within region II. For

L7(cos @) =4 [P(cos 8) + PJ{ —cos 8)],
and
M7(cos §) =1 [P(cos ) — P —cos 6)],

sin m¢ +22D1,,.(Jz +Bimh 1)

m

! ) dP;
lEzClm(.]I + i hy) 0 cos mo,
11

m

cos m¢ (17)

m

cos mg.

this case, v = 0 and the zenith angle function is the zero-
degree associated Legendre function of the second kind,
Q.(cos ), multiplied by zero order spherical Bessel and Neu-
mann functions, jy(o) and yylo):

Qslcos 8 )(C, jolo) + Dayolo)), (20)
where
Qolcos 8) = In cot (6 /2). (21)

Since spherical Bessel functions of the first kind of order
greater than zero satisfy

Limyj, (o) =0, (22)
o—0

it follows that only the product functions (20} describe real
power carried to or from the source region for a physically
small load located at the center of the antenna.

Turning to the polar angle solutions (18), since P7’
( & cos &)areneither simple odd nor even functions of cos 8,
we construct functions of definite parity

(23)

(24)

where the dummy index A of (23) is named for future convenience. An antenna loaded at the center and driven by the plane
wave described in region I1I will have field symmetries in region II similar to those in region II1. Combination of all the above
shows the TE and TM fields in region II to be

=>3vv+1)T,, Mo )M"'cosm¢——1221'( + 17, ( ) ™ sin mg, (25)
v>00 v>0
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& J ( ) :
1, = S SA+ 1 2 Ly cosmg—i'S $40+ 1610 2 L7 in mo, 26
A>0 A>0 2
Ey = zi’fv Jlo cos me&—zzz ~ sin m¢ (27)
v>09 v>0 ] 0’9
-> Egﬂ.mj}- (0') COS mé +iy zé—,{mjl (C’) Sm mé,
A>0 3 A>0]
aM'7 ’V" .
nHy = —iy ZYV,"_]V(O’} cos mé — Y ZTV",_]V(O') sin m¢ (28)
v>0 ¢ v>0 1
=3 560 (a) =L cosmd = 3 $Eunds (a) E5 sin me,
A>0 7 A>0
=—iy ZTva (a) cos mg — > ZTV,,,J (0) sin m¢ (29)
v>0 v>0
dL?%
+iY S il ) —= cos m¢ + 2 S s (0) —- sin mé,
A>01 A>0 3
nH, = z ZTV"JV(U) cos m¢ — IEOZTW"JV sin m¢ (30)
v>0 2
+ ZZ;,,,,,JAU ——IZEQ,,,JA(U smm¢
A>0 A>GC 3
{
Off-centered loads would result in additional field terms and
with other symmetry. All fields are subject to the boundary
conditions®® H, = Tosnd —————(— Cysin o + D, cos o). (36)
E,(cosyy)=0 (31)
and
il | =0 (32)
dg "7V
Equations (31) and (32) affect the solutions in two ways. First
they restrict m to be less than azimuth indices v or A and,
second, they require that
M7(cosyh) =0 {33)
and
(34)
Figure 2 shows values of v and A for which (33) and (34) are - - r:;”l
satisfied as a function of ¢, for m = 0 and 1. Appendix C L d& o8
contains numerical values of v at roots of M (cos ¢) obtained
by numerical techniques as shown in Appendix B, while Ap-
pendix D contains the functions M, (cos @) at v values which
are roots of M, (cos 1°). | (S S L I
In terms of the functions shown in (20) and (21), the © 1 2 0 40 0 & 70
TEM fields are v
= 1 i FIG. 2. Root values v or 4 as a function of antenna half-angle ¢ for the three
Eo = iosin 8 (Co cos 4 Dy sin o) (33) functions M,, M !, anddL}/d6.
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It is convenient to define circuit parameters in terms of the
TEM modes. Although the fields are singular across the
load, the circuit parameters are not.>® The potential ¥ (r)
between antenna arms is found using the equation
o v
Vin=— E dé. (37)
k Jy
The characteristic admittance G of a biconical transmission
line for the TEM mode is

G=—T" (38)
7 In cot (¥/2)
It follows from (37) and (38) that the TEM electric field of
(35) can be written
E, = 19T (39)
2mrsin 6

The radial current I {r} is calculated from the equation

Ir)= % L 2"H,, sin 6 d¢ (40)

6=4
It follows from (40) that the TEM radial current of (36) can
be written

1{r)
H = — 41
¢ 27 rsin @ “1)

It is also convenient for what lies ahead to express V'(r) and
I (r)in terms of their values at the antenna termination where
r = a. In those terms, the circuit quantities are

Virl=V(a{cosk(a—r)+i[Y(a)/G]sink(a—r}
(42)
and
In=V(@lY(@cosk(a—r)+iGsink(a—r)], (43)
where Y (g} is the termination TEM admittance. The load
admittance ¥, presented between the conical apices of the

antenna is known or can be measured, and is equal to the
ratio

Y, =1(0)/V(0). (44)

In terms of known parameters, the TEM admittance at all
other radii is

Y(r) _ Y, —iGtano
G G—iY, tano

(45)

Comparison with Schekunoff® shows identical admit-
tance and voltage dependencies for the transmitting and re-
ceiving cases.

The surface current density is related to the magnetic
field adjacent to it as

AXH=1, (46)

where I is the surface current density in amperes per meter
and 7 is a unit vector normal to the conductor. Knowledge of
the field coefficients and (46) permits the calculation of all
antenna currents. Those due to the m > 0 modes are the re-
ceiver modes, and the mm = 0 modes are the transmitter
modes.*
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lil. BOUNDARY CONDITIONS

The boundary conditions yet to be applied are that the
angular fields are continuous at radius a. Each of the four
field components, separately evaluated in regions IT and III,
are equal to their own value across the interface within the
aperture angle ¢ < 8 < 7 — ¢, and the angular electric fields
are zero in region III immediately adjacent to the spherical
cap, i.e., for0<6 < ¢ and for # — ¢ < 8<. Table I contains a
list of integrals useful to establish the needed equalities,
while Table II shows useful integral groupings. To evaluate
all field constants another set of integrals is needed similar to
(II-2)~I1-5) except sin m’@ is exchanged by cos m'¢$, and
cos m' by — sin m'¢. Evaluation of these integrals and plac-
ing each equal to itself across the interface, including the
pole caps for angular electric fields in Region I1I, yields the
set of equations contained in Table III. Table III is sufficient
to permit the evaluation of all field constants. Appendix E
contains numerical evaluations of some integrals of Table I,
for the ¢ = 1°, m = 0O case.

Once the parameter set 3, is known, (I1I-1) may be used
to determine ¥ (a). Equation (45) evaluated at r = a deter-
mines Y (a) and since I (@) = Y (a)V (a), (42) and (43) may be
used to determine V (r)and I (r) for all radii. V' (0)and 7 (0) are,
of course, the load voltage and load current and sufficient to
describe the receiving antenna as a circuit element. Equation
(ITI-3) may be used to determine the parameter set 7. This
completes the solution for all m = 0 modes.

IV. THE FIELD CONSTANTS
A. Spheroidal biconical antennas

The spheroidal biconical antenna is the special case of a
biconical antenna with 3 approaching 7/2. As was shown by
Schelkunoff,® the complementary waves within the antenna
region may be neglected when the gap between arm tips is
much less than A /2. For this case and for m = 0, (I1I-1) and
(III-2) lead to the following equation for 3,,, where o is the
interfacial value:

Jlo)  5G?  Pilcosy)

" Hlo) w7 DyH(0)Y(a)

( 2141 ) D,.,P,.{cos 9)
W+ /% H.0)

,310 =

and since P,(cos 1) decreases toward zero as i approaches
/2, it follows that

Bio =J,(0)/H,(0). (47)

In asimilar way, for m > 0, the equations of Appendix Clead
to the result that

Bin = — Jilo)/H,(0) (48)
and
A, = —Jjilo)/H,(o). (49)

Equations (48) and (49), of course, are descriptive parameters
for scattering from a conducting, spherical scatterer.
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TABLE I. A table of integrals of associated Legendre functions. m = 0 values are found in Ref. 9,

PPLTsinfdé =

-y
1 f
14

TN A4+

2sin YL 7(dP 7 /dy) =
- 2a+1) O+ 0=
2L 7
T(cos ¢) [{—m+1Pr  —(+1)

cos YP 718 + m,2q).

v 2 sin yPPdM™/d
2. f PrMrsingde — SSOVPTEMU/AN) o g4 1) =1,
v viv+ 1) —1{l+1)
— 2P cos )
o 2P i I+ mg+1).
T e (v—m+ DL, \(cos gJoll + m2q + 1)
T . 2sing d’L
3 L™L7sin0d6= Lrlit g L,
J; 1 Sin YRR Ady (vA)=1,,
= iny dM™ dM™
s MT™M7sin0do= — 2Sn¥ MY Sy o =1,
v v+1 dv  dy
s. J-P;"P;'.'sinede— 2 _(tmt siiy=1,.
A A1 (—rm)
v dPTdLy  mPTLT
6. 6do L MR A4 41,
J; sin 646 -6 sin 8 W+ Dy
v dLTdL™ mL7L™
7. gagPLidLy mLILY i el
J:, sin de 48  sin’d W+ L,
7~ ¢ mde 2Mmpm
8. singdg L MY mMUPT v,
- de dé sin? 8
v aM™ dM7T  mMTMT
9. f sin 8 d@ A il B I,
, s FRPT) anzg - WAL
T — ¢ m m 2 mpm
10. f singdg MY ALY | mMILT _,
v dé 48 sin? 8
©  dPrdPT  mPTPY
1. PP el L T R
L sin0db e e * ame W F W
T - d
12 mJ- d9-% (prmm =o.
X 40
T — d
13, mJ a6 -2 (L mMm = 0.
6
T — (1 d
14, mf 65 \LFPT)= —2LTPPSU+m2g+ 1)
15. mf de——e(P;"P;'f)=0.

B. General solution. m =

0

The set of field constants for m = 0 follow from (III-1)}-
(II1-3). Solving them for S,, gives

Bio=4,+ ;7’1'&'0/51,

(50)

TABLEII. Aperture expressions for establishing the equations.

1. m=0 J‘dﬂH‘
dPy Py

2. Idﬂ(E, d@l cosm'é — E, in; sin m’ )
de' rMm'

3. jd!)(ll‘ dG‘/ cosm'd + Hy — e‘/smm’ )
L P

4. d\E; — 7 ¢—E, sinm'¢g |.
m'LT m

5. j‘dﬂ H, — ‘s + H, sinm'e |
sin @
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where the symbol ” over the summation indicates that the
!’ = [ term is not to be included in the sum, and where

2i

G* .
Ay = = 1+ Do Ty + 5 Pileos Y] Dy Prleos ¥
)

+ 1+ 1)2 zl W+ 1WDyojy 1y,

l)lv vy

2inG

B, =D,o(1(1+ Yt~ 2L " [Pylcos )y
TP

o+ LT )
_ 2inG?
v, —Dm( I fcos Y Prlcos )

J 1.1,
I+ N+ ”””ZW

LT

Equation (50) may be solved to obtain each of the coefficient

sets 3,, to whatever accuracy is warranted.
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TABLE III. Equations for establishing values of coefficients.

1. Y& _ ZG 9 b, 4+ BohPfcos Y
a Y4
_ Via) Plcos¢)
2. I(l+l)'DIm(JI+BlmH1)111_1(1+1)2 - 2 nootds2 )

L.ovv+ WY d, = 3 I+ 0D, + BrmhiM,-
[

4. I+ NCp i+ amhMy = ;'{ A+ 1) om indy

8(m,0) + 2mP [(cos ¢) ;, Sam JaL 7(cos ).

5. AA+ W Lidyy =44+ 1) ; Coml i + ai H )y — 2mL T(cos ) ;Dlm(jl + B 1 )P ["(cos ¢).

C.m>0

Field coefficients for the m > 0 modes follow from
(I11-2)—(III-5). Combinations of (III-2), (III-3), and (III-5)
give an equation for 3,,, of the form

Bn = (Zg, Bim +Bin+ 311 a,,,,) (51)

while (III-4) and (III-5) give an equation for ,,, of the form

@ (zg '@y + B, +;f;"ﬁp,,.)- (52)

a,,, and 3,,, may be found concurrently to whatever accura-
cy is deemed worthy of being obtained. Once a,,, and 8,,, are
known, (I1I-3} and (III-5) permit the calculation of 7',,, and
&m+- Knowledge of these parameters give the total solution
to the external field problem around a receiving antenna.
Parameter values from (51) and (52) are given in Table IV.
Appendix F contains some functional values of

J, /v + 1), 1, at roots of M, (cos 1°). Each electric multi-

All m = 0 modes are damped by the antenna load.
However, for 3 small and approaching zero, the parameters
v approach integer values only slowly, as may be seen from
Appendix C and Fig. 2. Therefore the integrals /,, remain
significantly large even for i quite near zero, as may be seen
in the values of Appendix E. The m > 0 modes, on the other
hand, are undamped by a physically small and centered load,
and their scattering is independent of it.

D. Thin biconical antenna

The thin biconical antenna is the special case of a bicon-
ical antenna with ¢ approaching zero. For this case v ap-
proaches an odd integer, A approaches an even integer, P,
(cos ¢} approaches unity, and P *(cos ) approaches zero as
sin™.

E.m=0

For this case, using Schelkunoff’s results,® Sec. 2.10,
and solving (III-1}HIII-3) we obtain, for very small values of

pole interacts with other electric multipoles and all magnetic Bio [l_ ( Tio — Dio ) (53)
. - [y
multipoles. h, D,
TABLE IV. Parameter values for (47) and (48).
L,z QLY

Fi=I(l+ OUD, Hly — 13 + 12D, b, Y —2" 4 4m?D, h(PTPY —2 4

i {1+ ODy, H, I — I*(l + 1D, IZV‘,W+WVIW im P ');i(/l+lv,11u

. J I 1., AL LWL7I,

B, =~—~1(l+1D,J.I,+1{l+1 '+ WDy S ——————4m’P"' ¥ D, PIS ———— 1+ 2mP" ¥ C,.,.J, ,

! mY 14y ( ); { )D["JIZV:V(V+1)iv1w Z i mte ;'{M'Fl)-’xlu ; [E 1; T.L,

fim=2mPIC. H, ; (nL 2L} Jad),

gim =1+ V' + 1D by 3 (S (MY + 1), L) — 4m*PTD, b PT S (AL TPV AR + WL ],

Fr. =1+ 1C,h1, —C,H, ; [A A + Wl PIN T L)

"
Bj

]

Sim= —2mD]PVh,. ;(-’41:41-’4")/(-’4144),

8'm =CrnH, ; [AA+ WL 4, 11T, 1)

m = — I+ 1)Cpfidy + Z Crmdy: ; [A A+ Vjadudy, N T) — 2m ZDr..JwPTv' ; UnduL 2V Jadiz),
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. =m$}mo, (54)
lo
76%Ph, [ A+ 1 \o
Yo = 1D, —
0 0 Y{a) ( {+1 )ZT‘
{'o
1G0*hy), ( U+ 1 }“
x |1 )
[ + 7Y (a) (1(l+1)) (3]

Since G approaches zero as the logarithm of ¢, (53) and (55)
lead to

Yio=D, and B,=0, (56)
while (45), {54), and (56) combine to give

Via)
a

=2tan aiDm Jjilo). {57
1

lo

F.m>0

The coefficients for m > 0 may be evaluated using (51)
and (52) for B,,, and «,,,,, respectively, combined with the
defining equations of Table IV. The results are

'(cos 1),

(58)
where, in (58}, (/ -+ m)and (/' + m)are odd and even integers,
respectively.

] 1y . ]
= F”’;‘%%} (0P F1c05 ¥)S Dy Jy P08 w(,sg)

where, in (59), (/ + m)and (/" + m)are even and odd integers,
respectively. Equations (58) and (59) combine with the equa-
tions of Table III to show that, in the limit as ¥—0,

Sim — Cim = @1 Cp by /1), (60)
Yim — Dy = Bim Dy (b1 /) (61}
Itis, perhaps, of interest to note that in this thin antenna
case, the scattered electric multipolar field has its origin in
the driving magnetic multipolar field, and vice versa. Equa-
tions (58)-(61) show that a,,,, 8., §;, — Cimrand 7,
— D,,, all approach zero as sin>™y.

_ im2l+ 1) , m ;
B, = ———Dlml(l 1) UZJI(U)PI (cos '/’)Zcz'm.h'P

V. RECIPROCITY

The electromagnetically exact solution for an arbitrar-
ily sized biconical receiving antenna permits direct confir-
mation of the reciprocity theorem for antennas.

The equality of admittance in an antenna when used for
either reception or transmission may be seen by use of the
following argument. Using (III-1), the terminal admittance
is of the form

Y (a) = 3’93 S DioxiPilcos (62)
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while {III-2) may be written

W+ UDioX Iy = — lG—’;Z’—‘ﬂP,(cos ¥
T

J 1,1, 1'" + 1)D, %,

22 . (63)

viv+ i1,

For a receiving antenna

x; =Jji{la} + Bk (0]
and for a transmitting antenna

x; = Bohilo).
In both cases
X, = 1 .ﬁ.x
o do

Since solutions are obtained by elimination of x; from (62}
and {63), it follows that ultimate solutions for ¥ (e} and Y (4}
are identica) in the two cases.

Radiation patterns produced by the transmitting modes
for receiving and transmitting are not the same. The radi-
ation pattern for the m = 0 mode follows from Poynting’s
theorem and the field equations (14)~(17), and is

Do (sz)
Ne= Z ma® \ do 2o (64

lo
where N, is the radial component of the Poynting vector,
and where for reception

Z, =ReBiy + BB (65)

Although the formal result is the same in the two cases, the
parameters are not, and as shown in (G8),

P+B) - B+B)
= (28! —1)sin’y + B sinycos y, (66)
where notation is defined in Appendix G. Since the differ-
ence in Bs is /-dependent, different values of / will be weight-
ed differently in the radiation transmitted during reception

or transmission, and therefore the radiated power patterns
will differ.

VI.POWER FLOWS

The power absorbed by an antenna may be calculated
by the use of Poynting’s theorem. Writing N for the Poynt-
ing vector and N, for its radial component,

N, =(E,HY—EHY)/2,
where the asterisk indicates complex conjugate, and intro-
ducing differential solid angle d¢2, where

df} =sin 0d6 dg,

it follows that the power flowing in through a Gaussian sur-
face of large radius surrounding the antenna is

P= — §PN, dn (67)

and using conservation of power, P is also the power ab-
sorbed by the antenna. Evaluation of (67) using the external
field equations when r is very large shows that
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_ _477- oo {—1 o l—1
P= S (53 +55)
4U (m)2 + 1! — m)(/ + m)!(Re By, + BB, )
220(+ 1)l — 1 — m)/21% [ — 1 4+ m)/2]%
+(52+53)

m*2] + 1)l — mI(! + m)!(Re a,,, + a;mat,) ]
2201+ V) — m)2]1P 11 + m)/2]7 '

(68)

The plane wave also carries momentum, and mometum
will also be transferred to the antenna. According to Ein-
stein,'® even though it is very small, it still must be con-
served. The momentum density associated with an electro-
magnetic wave is N/c”. Since we are considering an
incoming y-directed plane wave and, by symmetry, there can
be no other directions of momentum transferred to the an-
tenna, we confine our attention to y-directed values. It is

oo {—1

4U (m)(l + mMl — m)!

convenient to work with directed power, which is ¢ times the
rate of change of momentum. The directed power passing
through a Gaussian surface of radius 7 is

P, = $PN,sin 6'sin ¢ d12. (69)

In the absence of any scatterers, a plane wave with Poynting
vector magnitude N, will show directed power

27PN,

passing through the region. The difference between this val-
ue and (69) evaluated with the antenna in position is the
momentum extracted from the beam. Conservation of mo-
mentum requires that difference also to be the momentum
transferred to the antenna. ¢ times the rate at which momen-
tum is received by the antenna is, therefore, given by P,
where

P,= — ¢'N,sin @ sin ¢ d12, (70)
where the prime over the integral indicates that only those
terms proportional to a,,,, 8,,.., or products thereof are to be
retained.

Evaluation of (70) yields the following expression for P,,,
after rather lengthy algebra.

=2 el
il R o e T

lo me le mo

Q20+ 1) [ U+m+2) (I—m—1) (m + )21 + 1)
XRC[ i+ 1) B + (14283, )( I+ 17 Biyimer + 7 Bi_tm+1+ ——12{l+ T2 a,‘m+1)]
ol & ()l + D —m) o [ m@l+1) Lt 2 [ D+ m 4 1)
+(§1:;+§§)221(l+m)’2(1—m)!2 1{+1) @ + (14 ”")( I+ 1) frtmat
lo mo le me 2 ) 2
{m + 1)l — m) (= m)l+m 4+ )2+ 1)
+ 2 A m+ 1 10+ 1 Bz,m+1)”- (71)

Appendix C and Fig. 2 show that for the m = O case the
parameters v approach integer values quite slowly with de-
creasing . Therefore the integrals ;, remain significantly
large for values of v in the neighborhood of / even when ¢ is
quite small, as may be seen in Appendix D. The currents pass
through the load and, generally speaking, are damped. The
situation with the m = 1 modes is quite different. v and 4
approach integer values much more rapidly with decreasing
¥, and the currents are undamped and unaffected by the
load. Nonetheless these currents are essential to the process
of power reception, as we shall see.

Since transmitting antennas, generally speaking, do not
have infinite gain, the ratio of radiated directed-to-total
power satisfies

P,/P<1. (72)

For example, in the case of a center-loaded biconical trans-
mitting antenna, the ratio (72) is equal to zero. A receiving
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antenna, on the other hand, will gather power from the wave
and, generally speaking, some of it will be dissipated in the
load and the remainder reradiated away in the manner of a
transmitting antenna. The received directed-to-total power
ratio satisfies

P,/P>1. (73)

Let us apply these concepts to (68) and (71). For the
m == 0 case, these equations become, respectively,

—8r & (2 + 1) e
= R *
nk? ; 10+ 1) i T_1 P (ReBio +BioBT)
lo 2 )
(74)
and
— 47 & 21+ 1 17?2
P, = nk;’;( +1) Re B, (75)

I+ 1) 22,(1___1_)!4
2

lo
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Power absorption occurs when Re 8,, < 0. For that case, the
term proportional to 8 Re 3, in (74) represents power ex-
tracted from the beam while the 8 5,,3 % term represents
power radiated away with no net momentum. Therefore,
directed power in proportion to 8 Re 3, is extracted from
the y-directed beam. Yet by (75) the momentum of the beam
is reduced just half of that amount. We conclude, therefore,
that the m = O terms cannot by and of themselves describe a
satisfactory solution to the receiver problem. The 3, terms
are insufficient to account for the conservation of momen-
tum and, therefore, the receiver modes and the momentum
transfer associate with them are essential for power recep-
tion to occur.

Vil. CONCLUSIONS

This paper contains the modal solution of a biconical
receiving antenna. The solution permits the calculation of
antenna directivity and impedance, momentum and power
flow to the antenna, all current modes on the arms and caps,
and all electromagnetic fields including near and scattered
ones, all in response to a driving plane wave. It is shown that
although the m > 0 modes contribute no useful load power,
they must necessarily be present for momentum to be con-
served in the act of power absorption. The special cases of
very thin and nearly spherical antennas are treated, and cer-
tain selected numerical results are shown. Detailed calcula-
tion of comparative receiving and transmitting admittances
confirms that they are identical, as predicted by the reciproc-
ity theorem. The radiation patterns, however, for retrans-
mission during reception and for transmission differ.
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APPENDIX A

It is desired to make a spherical harmonic expansion of
e " as

e—iasinﬂsin¢
®© I
= z Z Cim 1(1+1)j1(0)P;"(0059)cosm¢
I=0m=0
o i
—i> % Ci H+ 1) 5 1P ricos 0) sin mg,
I=0m=0 m

(A1)

from which it is necessary to evaluate the coefficients Cj,,
and C:,,. Multiplying (A1) by P [*(cos 8 )cos m'¢ and inte-
grating over the full range of solid angle gives

21 T
f d¢ f sin 0 d6 P "(cos 6 )cos m¢ e~ sinfsin¢
o o

! Cy
-2 I+m) Hi+1) Cim
—m) 2141
while doing similarly with P7"(cos 8 }sin m'¢ results in

Jilo)[1 + 6(0,m)] , (A2)
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27 T
f dé J sin 8 d6 P "(cos 6 Jsin m¢ e — ' sin fsiné
0 (o]

! C3
—or +mp 1{I+1) Cip

(o). A3
—m)l 2051 Jilo) (A3)
Using the limiting value of j, (o) that
o 2]
lim j, (o) =
740 21+ 1)

and taking the / th derivative of both sides of (A2) with re-
spect to o, then letting o become vanishingly small results in
(A2) becoming equal to

2T T
f do f sin 6 d@ P"(cos 6 )cos me¢ ( — i sin @sin ¢ )’
0 0

i 3
-2 +m) Il+1) 21! {1 + 6(0,m)]
(l—m) 2141 2I+1)! m

(Ad)
and (A3) becoming equal to
21 T
J do J’ sinf dOP 7"(cos 8 )sin me ( — i sin @ sin @ )’
0 0
2 s
— 2 I+mt 17+1) 21! im_ (AS)

(—mh 21+1 21+ 1) m
To evaluate the left sides of (A4) and (A 5) we note from sym-
metry that
2
d¢ sin'd cos m¢ = 0 unless (/,m) are both even integers,

(A6)
J dé sin' ¢ sin mp =0 unless (/,m) are both odd integers,
(A7)

o]

J sin 8 d6 sin'@P "(cos 8) =0 for (I + m) odd,
0

m—1)/2 2[+ ll!(l + m)!
(21 + 1)

Since C$,,and C,, exist only for different sets of (/,m), it is
no longer necessary to keep track of them separately, and the
exponential may be written

exp(——icrsinesin¢)=(iicosmqﬁ—iiisinm(ﬁ)

le me

=(—1) , (I+m)even. (A8)

lo mo

X Cy, Jil0)P(cos 6). (A9)

I+
m

By use of the identities

sin?'g = % [ ’Igo (—1f-*2 (i’) cos 2 — k) + (i’)]

m even, (A10)
I- -1
sin? ~'¢ = # zl (—1yf+e-t (ZIk )sin(21—2k— 1),
k=0
m odd, (A11)
we obtain
21 277_ ( 1 )
ol = ZT(_qy2
J; d¢ sin'¢ cos m¢ > (—1) (+my2)
m even, (A12)
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27 (m—1)/2
—(—1)

27 . ] 1
J; dé sin'é sin m¢ = > i+ m}/Z)’

m odd. (A13)

Combination of (A5), (A8), (A9), (A12), and {A13) results in
the equality
2m(2l + 1)( I—m )
= — Sl + m,2q),
20+ 1) \+m)/2 ( 9

where ¢ is an integer.

Turning to the field equations, we consider a y-directed
plane wave with field values

E=7 and H=(1/9), (A15)

where X and Z represent unit vectors in the direction indicat-
ed. Using (A15), we obtain

(A14)

Im

— i sin @sin &

H, = —l—sinecos¢e

or
oo | o A
H = isint9cos¢ Y Scosmp—id» Y sinmé
n o o 11
le me lo mo
(!
x LY ¢ 0P ricos 0). (A16)
m
Since
Lie—iasinGSinaﬁ =sin0cos¢e7iasin95in¢, (A17)
o d¢
it follows that
w w
H, = L Y dcosmg—i Y sinmé
AT 1 2 2
lo mo le me
Jilo) m
x1{{ + 1)C,,, —— P[*{cos 6). (A18)
o

Next we seek an expression for the radial component of
the electric field. We know that

E = Cos ee—iasinesinqﬁ
,

and we seek a solution of the form
o I w [
E =Y im cOSm@ —i3 > Dj, sinmé
0 0 [ ]
I m I m

x 1l + I)Z’—(-QP;"(COS 0)
o

(A19)

(A20)

from which it is necessary to evaluate the coefficients
Dj,and Dj,.
To begin we note that

i a

: ____efiasinesina&=Cosee—iasiné)sina& (A21)
osing 90
and
1 o .
=2 sin(2s + 1)4. A22
n s;o ( )6 (A22)

Combination of (A9), (A19), (A20), and (A21) gives

907 J. Math. Phys., Vol. 23, No. 5, May 1982

E = i iisinm:ﬁ—{-iiicosm(ﬁ)
s=0
llo nllo IOeSe
i+ 1)
m

X 2 sin(2s + 1)¢

Clm

w19 pricos o).
g

(A23)
We work in detail the case of / odd, and note that the solution
for / even follows in a parallel way. For / odd we equate (A20)
and (A23), then differentiate each side (/ — 1) times with re-
spect to g, then let o become vanishingly small, to obtain

{ {
(2 Di,cosmp—i >y Dj, sinm¢>P7’(cos0)
m=0

m=20

”

I o= . 2C,,, dP7(cos @)
= sin(2s + 1 .
5 8 e e LG

mo

(A24)
Since multiplying (A24) by sin m¢ and integrating on ¢ from
0 to 27 shows that D, = 0, we are justified in dropping the
superscript on D §,_ . Multiplying (A24) by cos n¢ d¢ and in-
tegrating on ¢ from O to 27 results in
D,,[1 + 8(0,1))P}(cos §)
e C,,, dP T cosf)
=T
X (1 + 8(0,1))(5(n,|m — 25 — 1))
—b8(n,m + 25 + 1)]
and the right-hand side (rhsj of (A25) may be written

(A25)

U—n_1/2 Cl,25+l+n dP?S+l+n

s=0 2s+1+n dé

rths =

Wanzw2 Cpye g _ dpi+i-n

+
2s+1—n do

s=n/2

22 Cp,_y_y P} P! (A26)
s;, n—2—1 do

Substituting into the last term of {A26) thats’' =n —s5 — 1
changes it to

= CI,Zs-l—n dP125+1—n
s:n/22s+1—n d@

which, when added to the center term, gives

(I+n—1)72 C1.25+l—n dpf’)f‘—"

= 25+1—n de

into which the substitution s' + n = s shows that it is equal
to the first term, or

—n 172 Cl.2:+1+n dP%S+l+n

s=o 25+ 1+n do

rhs =2 (A27)

Use of the identity from the theory of associate Legendre
functions that
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m

dP]
79—=£[(1+M)(1—M+l)Pi""‘—P:”'“] (A28)
and combination of (A25), (A27), and (A28) gives
D, [1+80,m)]P["(cos 8)
U= 12 Cpy oy g om
T & x4l4m
X [+25+14+mfl—25s—mPr+>
_P;n+25+2]‘ (A29)

It may be shown using the theory of associated Legendre
polynomials that

f sin @ d@ P(cos 6 )P * ¥(cos )
0

A= (4 m)

TR+ —m—2)
Multiplying (A29) by P "(cos 6 )sin 8 d@, then integrating
over 8 from 0 to 7 and using (A 30) results in the equality
[1+8(0,m)]D,,

(I—m—1)/2 CI,23+1+m

(A30)

(—1p
& wHl4mi—2—1—m)
(A31)

=2 (I — m)!

Equations (A 14) and (A31) combine to give
4RI+ )W —m)iU(m)

D, =
201+ 1)

im

(I—m—1)/2

P [l(_1)s/<1+2942-1+m)!(1—23—21—m)!]

(A32)
which, in turn, may be summed over s to obtain
D, =4U(m)2 + )W —m)/2'1 {1 + 1)
l—1+m) (I—I—m)
X ! ! A33
(=5 2 433

for m even.

By a parallel argument, for / even D§,, =0 and D},
may be written without a superscript. It too satisfies (A33).
These results may be summarized as

D, = 421 + 1l — mU (m)8(I + m,2q + 1)/21(I + 1)

X(I—l-{—m)!(l—l—m)!’
2 2

where ¢ is an integer.

(A34)

APPENDIX B

Numerical values of the functions may be obtained by
using the expansion of the function P J{cos 8), valid for
0<f<7t?

. _(sinO\" & I'(v+14+m+3)
Pv(cosﬁ)—( 2 ) SZ«O 'v+1—m—ys)
{—=1F (1—cosé\s Bl
s!(s+m)!( 2 ) o
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We first programmed (B1) on an HP-35C hand calculator to
obtain results accurate to several places. Knowing

P 7(cos @), the functions L J(cos 8 ) and M 7(cos € ) may be
calculated directly by using (23) and (24), and

dL 7{cos 6)/df@ may be calculated using the identity

dL7 Ly M7
dé ( )tanﬁ ( m+ 1) sin 8 (B2)
Useful recursion formulas are
M:n+] Lm Mm--l
L zszOthL"—(V+m)(v—m+”L:’“(B3)
and
M7, _ 1
L7, v—m+1)
LT MT
X[(2v+lcos6 - v+ *~'|. (B4
) M ( m)L'J‘,l (B4)

Initially values of P [}(cos &} were obtained for
[v:(1 + m)(0.1)10] and [6:1°(1°)89°]. Root values of M ;' and
dL 7'/d6 for m = 0 and m = 1 are shown in Fig. 2. The
procedure was then repeated using FORTRAN G language on
The University of Texas at El Paso’s IBM-360 to ten-place
accuracy, and all points confirmed with values given in Ref.
11.

The University of Texas at El Paso program was then
combined with a root locator algorithm to evaluate roots to
ten place accuracy at the 19 cone angles 3 shown in the
primary lists of Appendix C. The numerical approach 1—0
shown was obtained using the root equation

tan o YO+ 1))1/2) (B5)

2 Feuu+ )y

where ¢, and % , represent cylindrical Bessel and Neu-
mann functions, respectively, and using the calculator.

Root values of v so obtained were then placed into (B1)
and the IBM-360 program used to obtain the results shown
in Appendix D, for the special case of = 1°. Valuesof /,, in
Appendix E were obtained directly from (I-2), without nu-
merical integration. Values of I, , however, did require use
of a numerical integration algorithm (B1), and (4) of Table L.

Appendix F was obtained by using 1., in Appendix E
and obtaining j, (o) from the expansion

Jile) = ﬁ(ﬂ)” 3 (— Wia/2)”

(B6)
2 2 s:QS!r(V+%+S)

and then finding J, (o) from (12).

All numerical work has since been confirmed using the
Fortran H language on The Pennsylvania State University
Computing Center’s IBM-370.

The HP-34C program utilized to evaluate (B1) follows:
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m=0 (v,STO 1) (6,STO 2)
1. 1 11. RCL1 21. RCL1 31. RCL2
2. RCL2 12 hLBL A 22. — 32. RCL5S
3. hcos 13. 1 23. RCL4 33. hy*
4, — 14. + 24, X 34, X
5. 2 15. STO4 25. RCLS5 35. RCL3
6. = 16. RCL'1 26. gx* 36. +
7. STO2 17. — 27. = 37. STO3
8. 1 18. STOS 28. RCL7 38. hPSE
9. STO3 19. 1 29. X 39. RCL4
10. STO7 20. - 30. STO7 40. GTOA
Results were read on RCL 3.
APPENDIX C: ROOT VALUES OF v AND 4, v IN DEGREES
First Root
dL!
v M, (cos ) M {cos ) 2 (cos¥
*0° 1.0 2.000 000 000 3.000 000 000
1 1.262 954 024 2.000 911 197 2.998 168 483
2 1.319 814 347 2.003 622 267 2.992 665 960
3 1.365 553 298 2.008 084 527 2.983 548 116
4 1.406 369 289 2.014 240 156 2.971 011 775
5 1.444 484 008 2.022 029 558 2,955 427 410
6 1.480 985 851 2.031 395 310 2.937 339 167
7 1.516 503 611 2.042 284 342 2917 433 609
8 1.551 441 338 2.054 649 074 2.896 484 410
10 1.620 624 163 2.083 645 601 2.854 594 866
12 1.690 041 573 2.118 126 236 2.817 293 581
14 1.760 654 396 2.157 927 288 2.788 554 311
16 1.833 170 003 2,202 973 048 2.770 595 146
18 1.908 170 247 2.253 268 671 2.764 320 834
21 2.026 463 290 2.338 751 346 2.776 954 627
24 2.153 206 357 2.436 817 899 2.815 071 616
27 2.290 146 521 2.548 404 204 2.877 385 093
30 2.439 211 866 2.674 829 833 2.963 078 409
33 2.602 622 864 2.817 847 128 3.072 097 215
36 2.783 012 956 2979 721 955 3.205 260 472
*Y M, (cos ¥)
10-" 1.1628
1072 1.1185
1073 1.0932
10— 1.0767
1073 1.0652
10—¢ 1.0567
10~8 1.0450
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Second Root

dL!
¥ M, (cos ¢) M} (cos ¥) —2 (cos )
dy
o° 3.0 4.000 000 000 5.000 000 000
1 3.323 635 023 4.003 018 842 4995 412 764
2 3.408 792 057 4011 853 585 4981 677 947
3 3.480 410 488 4.026 054 557 4959 404 322
4 3.546 353 691 4.045 132 592 4930 263 571
5 3.609 447 465 4.068 627 165 4.896 983 164
6 3.671 078 494 4.096 131 586 4.862 897 552
7 3.732 050 336 4.127 299 086 4.831 274 760
8 3.792 882 288 4.161 840 460 4.804 752 716
10 3915 488 842 4.240 140 918 4773 179 415
12 4.040 892 484 4.329 641 388 4773 224 272
14 4.170 419 778 4.429 491 154 4,802 816 920
16 4.305 101 966 4.539 238 182 4.857 824 606
18 4.445 838 186 4.658 731 348 4934 396 643
21 4.670 155 684 4.856 487 210 5.083 590 406
24 4912 930 502 5.077 505 745 5.268 995 091
27 5.177 336 316 5.323 737 373 5.488 160 381
30 5.466 996 648 5.597 956 269 5.741 125 621
33 5.786 177 372 5903 821 160 6.029 812 247
36 6.140 009 840 6.246 108 497 6.357 771 283
Third Root
| dL}
¥ M, (cos ¥) M ! (cos ¢) {cos ¥)
dy
0° 5.0 6.000 000 000 7.000 000 000
1 5.370 105 197 6.006 286 581 6.991 425 007
2 5.480 449 956 6.024 299 328 6.966 025 869
3 5.576 003 415 6.052 455 008 6.926 687 356
4 5.665 740 078 6.089 212 072 6.880 075 073
5 5.752 872 182 6.133 271 729 6.834 977 834
6 5.838 969 859 6.183 600 616 6.799 147 416
7 5.924 941 074 6.239 398 091 6.777 224 978
8 6.011 »373 196 6.300 052 314 6.770 720 621
10 6.187 171 603 6.434 193 311 6.800 868 046
12 6.368 665 718 6.583 557 048 6.877 844 394
14 6.557 438 143 6.746 844 503 6.989 952 845
16 6.754 772 476 6.923 496 022 7.129 303 339
18 6.961 836 378 7.113 448 485 7.291 169 285
21 7.293 192 695 7.424 042 290 7.570 807 920
24 7.653 099 721 7.767 442 393 7.891 793 298
27 8.046 109 253 8.146 987 690 8.254 315 347
30 8.477 509 679 8.567 166 410 8.661 058 944
33 8.953 593 052 9.033 722 907 9.116 675 708
36 9.481 976 769 9.553 887 870 9.627 700 794
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Fourth Root

dL}
¥ M, (cos ¥) M }cos ¢) a0 (cos ¥)
o 7.0 8.000 000 000 9.000 000 000
i 7.410 226 873 8.010 667 627 8.986 211 284
2 7.544 461 080 8.040 509 575 8.946 210 761
3 7.663 241 993 8.085 815 898 8.888 900 491
4 7.776 369 960 8.143 364 235 8.831 226 255
5 7.887 327 150 8210 719 660 8.789 441 405
6 7.997 804 564 8.286 124 006 8.771 759 942
7 8.108 776 292 8.368 326 238 8.778 817 933
8 8.220 872 389 8.456 439 665 8.807 573 992
10 8.450 112 907 8.648 077 529 8.915 298 914
12 8.688 042 984 8.857 062 784 9.071 013 712
14 8.936 451 746 9.084 704 568 9.260 834 113
16 9916 846 707 9.327 878 843 9.477 515 817
18 9470 647 436 9.587 669 951 9.717 448 016
21 9.909 637 608 > 10 > 10
Fifth Root
¥ M, (cos ¢) M '(cos o)
o 9.0 10.000 000 000
1 9.446 643 017 > 10
2 9.604 085 220
3 9.745 782 962
4 9.882 175 226
5 10.016 936 968
APPENDIXD: VALUES OF M, (cos §)FORy = 1°
y=r
e v=1262 954 0243 v=3.323 635 0233
1° <1070 ~10-10
2 0.162 260 5584 0.187 714 7334
3 0.257 081 6503 0.296 877 0784
4 0.324 185 6071 0.373 231 2456
5 0.376 004 6792 0.431 022 1462
6 0.418 066 9846 0.476 544 9264
7 0.453 315 1285 0.513 128 0784
8 0.483 501 1912 0.542 740 8592
10 0.532 834 8235 0.585 692 7923
12 0.571 532 6264 0.611 513 5449
14 0.602 488 5992 0.623 496 7863
16 0.627 417 0994 0.623 702 2477
18 0.647 415 9295 0.613 591 6298
21 0.669 739 6172 0.581 569 1255
24 0.684 284 3657 0.532 233 5250
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APPENDIX D (continued)

27 0.692 141 1019 0.468 625 7760

30 0.694 067 0231 0.393 725 7040

33 0.690 621 0462 0.310 530 8851

36 0.682 239 5539 0.222 062 7049

40 0.663 999 3163 0.101 101 8973

45 0.630 839 0439 —0.045 224 3570

50 0.587 304 3781 -0.174 570 3302

55 0.534 524 4815 —0.276 463 2005

60 0.473 596 2113 —0.343 164 7370

65 0.405 618 4787 —0.370 230 3843

70 0.331 709 2602 —0.356 813 0941

75 0.253 012 3164 —0.305 677 6002

80 0.170 697 5391 —0.222 919 1141

85 0.085 957 2579 —0.117 407 2380

APPENDIX D (continued)

y=r

] v=5.370 105 1974 v=7410 226 8727
1° <1071° <107
2 0.202 713 9504 0.212 273 1240
3 0.319 606 7561 0.333 207 6818
4 0.399 696 4972 0.413 586 6081
5 0.458 129 0225 0.468 960 0659
6 0.501 546 8402 0.506 121 2166
7 0.533 447 3023 0.528 684 1391
8 0.555 907 1645 0.538 872 8638

10 0.577 513 0415 0.527 993 1063

12 0.573 311 3518 0.482 727 5712

14 0.547 697 0835 0.410 629 7953

16 0.504 149 8180 0.318 992 3601

18 0.445 847 9211 0.215 179 2871

21 0.337 554 7858 0.052 661 4461

24 0.213 681 9963 —0.097 348 8006

27 0.084 800 2001 —0.215 140 9168

30 —0.038 969 7475 —0.286 883 9044

33 —0.148 508 1400 —0.306 115 3199

36 —0.236 246 5808 —0.274 243 7632

40 —0.310 064 0053 —0.168 154 9007

45 —0.325 091 9397 0.014 787 2856

50 —0.259 316 3344 0.175 911 7239

55 —0.134 330 5362 0.248 094 6657

60 0.016 502 4759 0.206 014 1167

65 0.155 796 9813 0.074 216 2516

70 0.250 550 1384 — 0.085 536 4145

75 0.279 384 2210 —0.201 827 9133

80 0.237 066 8715 —0.224 313 5343

85 0.135 352 9673 —0.144 791 5271
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APPENDIX D (continued)

=1
8 v =9.446 643 0.169
la < 10— 10
2 0.218 106 0884
3 0.340 412 7266
4 0.418 405 9502
5 0.467 725 7562
6 0.495 254 4730
7 0.504 803 9872
8 0.498 927 8909
10 0.448 721 5053
12 0.358 868 1314
14 0.243 148 9032
16 0.115 525 8239
18 —0.010 394 5959
21 —0.169 676 2038
24 —0.266 456 8403
27 —0.285 795 6745
30 —0.231 251 6238
33 —0.122 872 8504
36 0.008 362 3998
40 0.160 474 8434
45 0.229 416 4579
50 0.137 188 2283
55 —0.042 042 7157
60 —0.181 790 8100
65 —0.189 354 1079
70 — 0.065 488 6098
75 0.100 044 1961
80 0.191 876 0055
85 0.147 773 6022
APPENDIX E;: EXAMPLE EVALUATION OF INTEGRALS
Yy=1° m=20
v = 1.262 954 0243 3.323 635 0233 5.370 105 1974
I, = 0.458 631 1361 0.194 573 0789 0.116 495 1668
I, = 0.545 603 0742 0.043 806 5007 0.018 188 0377
I, = —0.051 167 0902 0.228 452 8684 0.026 357 4559
I, = —0.017 210 1421 —0.034 595 5027 0.138 905 9110
I, — 0.008 772 2773 —0.012 962 6301 —0.026 769 5043
I, = — 0.005 335 4918 —0.007 116 3367 —0.010 428 3607
I, = — 0.003 588 4906 — 0.004 560 4705 — 0.005 930 1007
V= 7.410 226 8727 9.446 643 0169
I, = 0.079 294 7911 0.057 645 2754
I, = 0.010 184 2647 0.006 540 9851
I, = 0.012 198 6631 0.007 289 9134
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Is= 0018 965 6803 0.009
I, = 009 772 9489 0.014
I, = —0.022 044 4934 0.072
I, = —0.008 728 1148 —0.018
L, = —0.005 061 790 —0.007

187 5305
753 9302
316 6208
792 8094
485 2265

APPENDIX F: VALUES OF J,(a)v(v + 1) /.(0)l,, AT THE FIVE ROOTS OF M, (cos 1°), FOR SIX SELECTED

VALUESOF o =ka. m=0.

ka 1.262 954 0243 3.323 635 0233 5.370 105 1974 7.410 226 8727 9.446 643 0169
0.1 17.250 488 57 15.459 654 41 15.983 050 65 17.017 464 67 18.362 852 3
0.8 2.045 846 653 1.903 091 756 1.983 455 853 2.118 224 302 2.289 025 68
1.6 0.843 044 447 0.905 737 954 0.969 480 875 1.045 360 643 1.134 818 31
24 0.328 900 228 0.550 329 109 0.620 979 924 0.681 397 636 0.745 665 65
31 —0.030 323 860 0.372 344 643 0.456 292 318 0.512 777 777 0.567 012 09
40 —0.730 655 518 0.210 073 547 0.320 328 783 0.377 798 951 0.425 932 87
APPENDIX G: RECIPROCITY OF ADMITTANCE B:=p;—sin’y (GS5)
For m = 0, the boundary conditions which led to (III- and
1)~I11-3) may be put in the form of (G1) and (G2): By =pB7 —sinycosy (G6)
I
e _ g S D,ox,P,(cos ), (G1)  where
a 1
. tan y = j(o)/ylo). G7
V(a) 771([+ 1) JVIIVII'VI (l + 1)Dl’O'xl’ . 4 ( ) . . . . ( )
= —%p >y 8 Since the power radiated in the two cases is proportional to
a NGP (cos ) L5 T vy + 1)1, the sum of the squares of the real and imaginary parts of the
— D, X1, ] , (G2) B coefficients, we note that
CHBI— B +B)
where (28: — 1)siny +B7 s (G8)
) = (28, — )sin*y 7 sin ¥ cos ¥.
x; =j; +Biohs
(G3)

X, =J,+BioH,.

Equations (G1) and (G2) also describe biconical transmitting
antennas, where

x; = Bioh,
(G4)
Xl =510H1-

An iterative solution to {G2) is used to find x, where, for
example, we may put V(@) = 1 as anormalization procedure.
Since the correct complex number of set x; is a unique solu-
tion to the equation, the same set applies both to cases (G3)
and (G4). Therefore I (a), as calculated from (G1), is identical
in the two cases and, therefore, so is Y (a). This verifies the
equality of admittance during reception and transmission.

The radiative coefficients 8, in the two cases are quite
different. Dropping the (/,0) coefficients, writing subscript 7
and ¢ for reception and transmission, respectively, and ' and
" for real and imaginary parts, respectively, shows that, for
each value of /,
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Erratum: Linear wave conversion in a warm, unmagnetized, collisionless
plasma [J. Math. Phys. 22, 2692 (1981)]

G. A. Kriegsmann
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60201
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The acknowledgments to the following government DOE DE-AC02-78ER0-4650 and ONR N00014-80-C-
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Erratum: Nonuniqueness in the inverse source problem in acoustics and
electromagnetics [J. Math. Phys. 18, 194 (1977)]

Norman Bleistein and Jack K. Cohen
Department of Mathematics, University of Denver, Denver, Colorado 80210

(Received 14 December 1981; accepted for publication 23 December 1981)
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Reference 1 (N. Bleistein and N. N. Bojarski, “Recent-  jarski, “Inverse Scattering,” Naval Air Systems Command
ly developed Formulations of the Inverse Problem in Acous- Report to Contract N00019-73-C-0312, October 1973, Sec.
tics and Electromagnetics,” DRI Report #MS-R-7501, 11, pp. 3-6.

NTIS #AD/A-003, 1974) should be replaced by N. N. Bo-
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